
Introduction to R 

Programming

26th February 2018

Helen Lockstone and Ben Wright

Bioinformatics Core



Introduction to R Programming

 Teaching day and separate workshop session to follow

 Format includes lecture slides to introduce concepts, 

interactively working through an online tutorial and 

workshop-style sessions to interact with tutors 

 Course material available at: 
http://www.well.ox.ac.uk/bioinformatics/training/Introduction_to_R/

 Aims:

◦ Introduce the R software through practical sessions

◦ Help make R and associated resources accessible to novice 

programmers

◦ Emphasise good programming practice 



Schedule

Time Topic

10:00 – 10:15 Welcome and introductory remarks

10:15 – 11:00 Getting started with R – RStudio, Data Types and Structures

11:00 – 11:15 Coffee Break (refreshments provided)

11:15 – 12:30 Guided tutorial: Handling and Analysing Data in R

12:30 – 13:30 Lunch break

13: 30 – 13:45 Overview of loops and functions

13:45 – 15:00
Online tutorial: Handling and Analysing Data in R (continued) 

and Loops in R

15:00 – 15:15 Break

15:15 – 16:00 Optional session to continue working through tutorial

3



Introductory Remarks



Why learn R?

 The ability to handle and analyse large-scale datasets is, and 

will continue to be, a key skill in modern biological research, 

as well as many other fields 

 Generating data far outstrips our ability to interpret and make 

sense of  it – and it is still hard to recruit good 

bioinformaticians

 R has become a key programming language for genomics due 

to the diverse set of  packages available through BioConductor 

https://www.bioconductor.org/



The downsides to R

 R is not an intuitive language to learn, even for those who are 

familiar with programming concepts

 It can take many months to start to feel comfortable writing 

your own R code, so be prepared for some investment of  

time, hard work and a steep learning curve

 R’s extensive functionality and versatility are its main attributes 

but also the reason it can be hard to know where to begin…



Tips for Successful Programming

 Logical thinking and problem solving skills are vital

◦ Decide what steps needed to solve a task

◦ Troubleshooting error messages

◦ Testing code to ensure it does what it should

 Consistency, accuracy and attention to detail

◦ Easy to make unintentional mistakes (which R may well execute 

with no warning message)

◦ Check what code is doing at every step

◦ Mentally predict what should happen, so you can spot potential 

errors

 Accept that it can be a frustrating process!



What is R?

 R is a powerful software package for statistical analysis and also a high-

level programming language

 Originally written in the 1990s for teaching statistics by Ross Ihaka and 

Robert Gentleman at the Department of  Statistics of  the University of  

Auckland

 It’s open-source, available for free for Win, Mac, Linux and regularly 

updated (maintained by R Core development team) 

 http://www.r-project.org/index.html

 Has become a mainstream research tool

◦ Users have contributed hundreds of  add-on packages (CRAN)

◦ Bioconductor resource is invaluable for genomic data 

https://www.bioconductor.org/

8

http://www.r-project.org/index.html


Bioconductor

9

Bioconductor packages extend functionality of  R to all aspects of  

handling, processing and analysing genomic data
https://www.bioconductor.org/



Getting started with R

 Some aspects of  R are analogous to tasks you might routinely 

perform in Excel:

◦ sorting/filtering data

◦ finding a particular occurrence of  text

◦ simple data summary statistics and tests 

◦ plotting graphs

 R provides far more complex functionality besides, particularly for 

statistical modelling/analysis and data visualisation. It can also 

perform small useful tasks with a simple line or two of  code 

(where there may not be a quick way to do the equivalent in Excel) 

e.g. finding the overlap of  two lists of  genes

10



Getting started with R

 For those without a programming background, the biggest challenge 

might be getting used to how the R language is structured, and working 

with objects to store and manipulate data

 Imagine that instead of  using Excel, we are giving R step-by-step 

instructions of  what we want to do (e.g. filter a column for all values 

<0.05):

◦ Our data could be created in Excel and read into R (like a table); it can be stored in 

an appropriate object (named by the user)

◦ We’d need to specify the column of  interest somehow (R has more than one way to 

do this) and set the condition ‘values less than 0.05’

◦ Finally we’d have to decide whether to display the output or save it in a new variable

 Although some aspects of  R can be quite unintuitive and take some time 

to become familiar with, they provide the flexibility that makes the 

software so powerful. 

11



Getting started with R

 R is extremely extensive and versatile, quite possibly no two people use it 

in the same way. So how best to get started?’

 Hopefully this course will help, and R itself  it very well documented 

with a large and active user community (mailing lists, online forums like 

stack overflow etc) – usually googling any R problem will find relevant 

threads.

 Learn by doing – follow examples in the manuals or start by running 

scripts written by others to understand what the code does before 

moving on to modifying code or writing your own scripts from scratch.

 It’s impossible to remember the details of  all R functions (or even know 

about all of  them!) – make use of  the help pages to check syntax, 

arguments, examples of  usage etc 12



Some general advice

 A computer will do exactly what you tell it to do and you need to tell it 

every little step, in the right order

◦ Imagine writing instructions that someone can follow to produce a particular result, 

including every tiny detail they would need

◦ Akin to instructions for an experimental protocol - important to be very precise

 Comment your code as much as possible – if  you need to revisit it at a 

later date, it will make much more sense!

 Check and double check (and check again) that your code is doing what 

you think it is doing – R has some default behaviours that may not 

always be realised, and can lead to problems if  not spotted

◦ Inspect the objects created, their length, contents and so on.

◦ Manually check a few elements of  the output to be sure they are correct

13



Problem solving

 You will inevitably run into problems when you are 

programming - try solving them by:

◦ reading the error message

◦ reading the help file

◦ make a list of  what could possibly be wrong and check these possibilities 

one by one

◦ break down a complex step into smaller, simpler steps (this is also a useful 

way to build up a more complex piece of  code)

◦ If  you really cannot solve a problem, remember there are usually alternative 

ways in R to achieve the same goal (using a related function for example)

◦ Google the problem – many helpful forums/lists

◦ If  all else fails, post a question on the relevant help list (but be sure to read 

the guidance first!)

14



R documentation and help

 > help.start()

 Most useful if  you don’t know which command to use

 Starts a Search Engine in your favourite browser

 Can get this also from the R GUI Help Menu

 If  you do know which command to use but need to check details

 > ?plot

 or equivalently 

 > help(plot) # help(“plot”) in RStudio

◦ Brings up the help page on the function ‘plot’

 From the R GUI Help menu or the R website, you can get Manuals (in 

PDF)

◦ An Introduction to R

◦ R Reference manual

15



R documentation and help

 Further reading

◦ Michael J Crawley (2005) Statistics: An Introduction using R. 

Wiley: Chichester, England

 This is an excellent book, and well worth working through

 Also has an associated web page with datasets, exercises etc

 http://www.imperial.ac.uk/bio/research/crawley/statistics/

◦ Tutorials and other textbooks – see for example 

http://www.statmethods.net/about/books.html or 

http://cran.cnr.berkeley.edu/other-docs.html (also includes R 

manuals in other languages)

◦ Various material on the R web site 

◦ FAQ

◦ R-help mailing list 16

http://www.imperial.ac.uk/bio/research/crawley/statistics/
http://www.statmethods.net/about/books.html
http://cran.cnr.berkeley.edu/other-docs.html


https://www.rstudio.com



The 

interface ;)

RStudio Interface

An interactive and easy-to-use interface with many features 

that make working with R easier 
Slide courtesy of Quentin Ferry



Console for entering R 

commands

RStudio Interface

Slide courtesy of Quentin Ferry



Script, data tables, etc…

RStudio Interface

Slide courtesy of Quentin Ferry



Clickable list of  

variables in memory

RStudio Interface

Slide courtesy of Quentin Ferry



Plots, Files, 

Packages,

help etc…

RStudio Interface

Slide courtesy of Quentin Ferry



RStudio on Windows

23



The R interface (Windows)

 From here we can start working in R and do thinks like:

◦ Check what packages are already installed

◦ Install new packages

◦ Check the current working directory or change to a new one 

◦ Access the help options

 As always, there are several ways to do things 24



Getting Started with R



Notation

 Throughout these slides, text in red denotes commands that you can 

type in your R session (it is good to type them directly rather than copy 

and paste to get used to syntax of  commands and expressions, at least to 

begin with)

 Note that commands are shown including the prompt sign > but ignore 

this when entering the command. For example:

> x <- 5

should be entered at the command line as: 

x <- 5

 An extra > as well as the in-built R prompt will give an error:

> > x <- 5

Error: unexpected '>' in ">"

 Commands are shown in red, and output in blue (this is the convention 

in the standard Windows R GUI but differs in other interfaces)
26



R basics: command line

Getting used to the command line (in red):

Prompt  [Whitespace] Command  [Whitespace] Return

>              1+2

[1] 3

Results are output underneath (in blue). Elements of  the output are 

indexed by the square brackets

 The prompt tells you that R is waiting for you to enter a command –

type a valid command and press return or enter

 Some output may be printed to the console (as above) or a new variable 

may be created for example

 The prompt symbol will be displayed again afterwards

 Sometimes a + appears instead of  the usual > prompt symbol. This 

means the previous line was incomplete while a command that is invalid 

will generate an error message
27



R basics: assignment

Variable name   Assignment operator (gets)   value

> x            <- 1

# Inspect the contents of the new variable named x

> x

[1] 1

# we can also write this as 

> x = 1 

Note that the contents of  any variable will be overwritten if  later 

assigned something else:

> x <- 4

> x

[1] 4 

28



Naming variables

 R is case sensitive so x and X are different variables:

> X 

Error: object "X" not found

 Variable names are chosen by the programmer and should start with a 

letter followed by letters and numbers – informative names are helpful 

for several reasons

 You can use . or _ to separate parts of  a variable name but not 

whitespace since this is used to detect the end of  a token (‘word’). A 

variable named data.norm or d.norm or dataNorm is fine, but trying to 

assign a value to a variable named ‘data norm’ will give an error: 

Error: unexpected symbol in "data norm"

 Elsewhere R ignores whitespace so the following commands are 

equivalent:

> x<-4+3

> x <- 4 + 3 29



Command syntax

> x <- c(1:5,8,9) # this creates a vector named ‘x’ containing some 

numeric values

 If  we forget the closing bracket, a + sign indicates the command is 

incomplete:

> x <- c(1:5,8,9

+ )

> 

 Some text editor programs highlight different types of  syntax in 

different colours or automatically close brackets and quotation marks to 

help eliminate typing mistakes

 If  we can’t simply continue our command, use Esc or control-C to 

return to the prompt and start again

 There is also a useful command recall option – you can use the 

up/down arrows to scroll through previously entered commands, which 

can be edited or re-run to save typing again 30



Data Types and Structures



Common data structures (object types)

 To do anything useful in R, we need to use objects to hold 

data or information and perform various operations on them

 The terms ‘object’, ‘variable’ and ‘data structure’ can all refer 

generally to objects created in R. There are several different 

data structures in R including:

◦ Vectors

◦ Factors

◦ Matrices

◦ Dataframes

◦ Lists

32



Common data structures (object types)

 Objects can be created in many different ways and hold 

different kinds of  information

 Unlike other programming languages, there is no need to 

initialise a variable or object in R (define it before first use) – it 

can simply be created and used directly

> x <- 1:10

> x*2

[1]  2  4  6  8 10 12 14 16 18 20

 We’ll work through some examples of  each type and look at 

ways to access or manipulate the data contained within an 

object

 Be aware that the type (class) of  an object and data it contains 

(numeric, character etc) can affect how it is treated by R 33



Vectors

 One-dimensional objects with length attribute

> x <- 1:10

> x <- c(1:5, 10:14)

> length(x)

[1] 10

> x[3]; x[7]; x[1:5]

[1] 3

[1] 11

[1] 1 2 3 4 5

34

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 10 11 12 13 14



Vectors

 Elements automatically added to create vector of  appropriate 

length

> x <- 1:15

 Can contain numeric or character data

> class(x)

[1] "integer"

> x <- c("a", "b", "c")

> class(x)

[1] "character"
35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

a b c



R basics: Factors

 Factors are useful for handling categorical data
> groups <- rep(c("WT", "MU"), each=3) 

> groups

> class(groups) # character vector

> groups <- as.factor(groups) # coerce to factor 

> class(groups) # factor

> groups

[1] WT WT WT MU MU MU

Levels: MU WT

> table(groups) # useful summary function giving the 

number of entries for each level of the factor

> groups <- factor(groups, levels=c("WT", "MU")) # re-

order the levels (default alphabetical)
36



Matrices

 Two-dimensional object with row and column number 

attributes

> x <- 1:20

> y <- matrix(x, ncol=2, nrow=10)

> dim(y) # get the dimensions

[1] 10  2

> head(y) # shows the first 6 rows

> colnames(y) <- c("Col_1", "Col_2")

> y

 All columns of  a matrix contain data of  the same type. A 

dataframe is a similar structure but the columns can be a 

mixture of  types – very useful for data with associated 

descriptive information 37



Accessing elements of an object

 Square brackets are used to refer to specific elements or 

subsets of  a vector, factor, matrix or dataframe

> x <- 1:20 # vector again

> x[5] # print 5th element of x to screen

[1] 5

 For a 2 dimensional object need two indices separated by a 

comma [row, column]

> y[2,1] # specific element – second row, 

column 1

> y[1,] # all of first row

> y[1:5,1] # first 5 entries in column 1

38



The working directory

 There are many useful functions in R for manipulating data 

stored in vectors, matrices or dataframes - best introduced 

through practical exercises of  the online tutorial

 One important concept before we get started is the working 

directory. If  we want to read in data from existing files or 

create new ones to save any plots or analysis results, R needs 

to know where to find/save them. 

> getwd() # tells us the current working directory

> setwd() # allows us to set a different working 

directory

◦ The menu bar also has a ‘Change working directory’ option

39



Getting started…

 Online tutorial for R programming:

◦ http://swcarpentry.github.io/r-novice-inflammation/

 To get set-up to start the tutorial, click the ‘Setup’ link in the 

menu at the top of  the page or navigate to 

◦ http://swcarpentry.github.io/r-novice-inflammation/setup/

 Download the required data files, then return to the main 

tutorial page and click on the ‘Analyzing Patient Data’ topic

 Try typing the first command into your R session:
◦ setwd("~/Desktop/r-novice-inflammation/")

◦ You may get an error message if  your actual directory structure does 

not match the command (likely to happen on Windows machines)

◦ See guidance notes for details or ask for help

40

http://swcarpentry.github.io/r-novice-inflammation/

