Oxford

Genomics
CENTRE

UMIVERSITY OF

OXFORD

S
s

i

Introduction to R
Programming

26" February 2018

Helen Lockstone and Ben Wright
Bioinformatics Core

wellcome centre
human genetics

The Wellcome Trust Centre
for
Human Genetics

OXFORD

Introduction to R Programming

 Teaching day and separate workshop session to follow

e Format includes lecture slides to introduce concepts,
interactively working through an online tutorial and
workshop-style sessions to interact with tutors

o Course material available at:
http:/ /www.well.ox.ac.uk/bioinformatics/training/Introduction_to_R/

* Aims:
° Introduce the R software through practical sessions

> Help make R and associated resources accessible to novice
programmers

> Emphasise good programming practice

10:00 - 10:15
10:15—11:00
[1:00-11:15
[1:15—-12:30
12:30 — 13:30
13:30 — 13:45
13:45 — 15:00
15:00 — I5:15
15:15 - 16:00

Schedule

Welcome and introductory remarks

Getting started with R — RStudio, Data Types and Structures
Coffee Break (refreshments provided)

Guided tutorial: Handling and Analysing Data in R
Lunch break

Overview of loops and functions

Online tutorial: Handling and Analysing Data in R (continued)
and Loops in R

Break

Optional session to continue working through tutorial

Introductory Remarks

The Wellcome Trust Centre

for
Human Genetics

OXFORD

Why learn R?

 The ability to handle and analyse large-scale datasets 1s, and
will continue to be, a key skill in modern biological research,
as well as many other fields

e Generating data far outstrips our ability to interpret and make
sense of it — and it is still hard to recruit good
bioinformaticians

* R has become a key programming language for genomics due

to the diverse set of packages available through BioConductor
https:/ /www.bioconductor.org/

The Wellcome Trust Centre
for
Human Genetics

OXFORD

The downsides to R

* R 1s not an intuitive language to learn, even for those who are
familiar with programming concepts

e It can take many months to start to feel comfortable writing
your own R code, so be prepared for some investment of
time, hard work and a steep learning curve

* R’s extensive functionality and versatility are its main attributes
but also the reason it can be hard to know where to begin...

The Wellcome Trust Centre
for
Human Genetics

OXFORD

Tips for Successful Programming

* Logical thinking and problem solving skills are vital
° Decide what steps needed to solve a task
° Troubleshooting error messages
° Testing code to ensure it does what it should

e Consistency, accuracy and attention to detail

° FEasy to make unintentional mistakes (which R may well execute
with no warning message)

° Check what code 1s doing at every step

° Mentally predict what should happen, so you can spot potential
errors

* Accept that it can be a frustrating process!

What is R?

* R is a powerful software package for statistical analysis and also a high-
level programming language

e Originally written in the 1990s for teaching statistics by Ross Thaka and

Robert Gentleman at the Department of Statistics of the University of
Auckland

e It’s open-source, available for free for Win, Mac, Linux and regularly
updated (maintained by R Core development team)

e Has become a mainstream research tool
° Users have contributed hundreds of add-on packages (CRAN)

° Bioconductor resource is invaluable for genomic data
https://www.bioconductor.org/

http://www.r-project.org/index.html

Bioconductor

Ocon d U Ctor Install Help Developers About

OPEN SOURCE SOFTWARE FOR BIOINFORMATICS

About

B. d t Install » Learn »
Get started with Bioconductor Master Bioconductor tools
Bioconductor provides tools for the
| d hensi f = Install Bioconductor = Courses
analysis and compre ensmn o = Explore packages = Support site
high-throughput genomic data. - Get support = Package vignettes

Bioconductor uses the R statistical
programming language, and is open

Latest newsletter
Follow us on twitter

Literature citations
Common work flows

source and open development. It * Install R " FAQ _
has two releases each year, 1295 - —Y_C_OmmUﬂlt resources
= Videos

software packages, and an active
user community. Bioconductor is
also available as an AMI (Amazon
Machine Image) and a series of
Docker images.

NeWS Use » Develop »

Create bioinformatic solutions with Contribute to Bioconductor
= Bioconductor 3.4 is available. Bioconductor . Developer resources
* Bioconductor F1000 Research Channel JEVelnper resources
launched = Software, Annotation, and Experiment = Use Bioc 'devel
. Orchestri;zt\ng high-throughput genomic packages = 'Devel’ Software, Annotation and
= Amazon Machine Image Experiment packages

analysis with Bioconductor (abstract) and

other recent literature. Latest release annoucement Package guidelines
I — * Support site = New package submission

Read our latest newsletter and course
material.

Use the support site to get help installing,
learning and using Bioconductor.

Build reports

Bioconductor packages extend functionality of R to all aspects of

handling, processing and analysing genomic data
https://www.bioconductor.org/

Getting started with R

* Some aspects of R are analogous to tasks you might routinely
perform in Excel:

° sorting/filtering data
° tinding a particular occurrence of text
° simple data summary statistics and tests

° plotting graphs

* R provides far more complex functionality besides, particularly for
statistical modelling/analysis and data visualisation. It can also
perform small useful tasks with a simple line or two of code
(where there may not be a quick way to do the equivalent in Excel)
e.g. finding the overlap of two lists of genes

10

Getting started with R

e For those without a programming background, the biggest challenge
might be getting used to how the R language is structured, and working
with objects to store and manipulate data

e Imagine that instead of using Excel, we are giving R step-by-step
instructions of what we want to do (e.g. filter a column for all values

<0.05):

> Our data could be created in Excel and read into R (like a table); it can be stored in
an appropriate object (named by the user)

> We’d need to specify the column of interest somehow (R has more than one way to
do this) and set the condition ‘values less than 0.05’

° Finally we’d have to decide whether to display the output or save it in a new variable

e Although some aspects of R can be quite unintuitive and take some time
to become familiar with, they provide the flexibility that makes the
software so powerful.

11

Getting started with R

R is extremely extensive and versatile, quite possibly no two people use it
in the same way. So how best to get started?’

Hopeftully this course will help, and R itself it very well documented
with a large and active user community (mailing lists, online forums like
stack overtlow etc) — usually googling any R problem will find relevant
threads.

Learn by doing — follow examples in the manuals or start by running
scripts written by others to understand what the code does before
moving on to modifying code or writing your own scripts from scratch.

It’s impossible to remember the details of all R functions (or even know
about all of them!) — make use of the help pages to check syntax,
arguments, examples of usage etc 12

Some general advice

e A computer will do exactly what you tell it to do and you need to tell it
every little step, in the right order

> Imagine writing instructions that someone can follow to produce a particular result,
including every tiny detail they would need

> Akin to instructions for an experimental protocol - important to be very precise

e Comment your code as much as possible — if you need to revisit it at a
later date, it will make much more sensel!

e Check and double check (and check again) that your code is doing what
you think it is doing — R has some default behaviours that may not
always be realised, and can lead to problems if not spotted

° Inspect the objects created, their length, contents and so on.

> Manually check a few elements of the output to be sure they are correct

13

Problem solving

* You will inevitably run into problems when you are

programming - try solving them by

(0]

o

(0]

reading the error message
reading the help file

make a list of what could possibly be wrong and check these possibilities
one by one

break down a complex step into smaller, simpler steps (this is also a useful
way to build up a more complex piece of code)

If you really cannot solve a problem, remember there are usually alternative
ways in R to achieve the same goal (using a related function for example)

Google the problem — many helpful forums/lists

If all else fails, post a question on the relevant help list (but be sure to read
the guidance first!)

14

R documentation and help

e > help.start()
Most useful if you don’t know which command to use
Starts a Search Engine in your favourite browser

Can get this also from the R GUI Help Menu

If you do know which command to use but need to check details

> ?plot
e Oor equivalently
e > help(plot) # help(“plot”) in RStudio

° Brings up the help page on the function ‘plot’

e From the R GUI Help menu or the R website, you can get Manuals (in
PDF)

° An Introduction to R

o R Reference manual
15

R documentation and help

e Further reading

° Michael | Crawley (2005) Statistics: An Introduction using R.
Wiley: Chichester, England

This is an excellent book, and well worth working through

Also has an associated web page with datasets, exercises etc

° Tutorials and other textbooks — see for example
or
(also includes R
manuals in other languages)

o Various material on the R web site
> FAQ
° R-help mailing list

16

http://www.imperial.ac.uk/bio/research/crawley/statistics/
http://www.statmethods.net/about/books.html
http://cran.cnr.berkeley.edu/other-docs.html

https://www.rstudio.com

tudio Interface

[JOX) RStudio
Q- - &) Project: (None) ~
@] my_script.R Environment History
Source on Save '~f" - ~#Run ®% | Source =~ 4 [1 Import Dataset~ y List~
Write your script here "} Clobal Environment~
Values
rnorm(100, 1, 1)
rnorm(109, 1, 1) p NULL (empty)
X num [1:100] 2.46 0.287 -0.193 1.568 ©.914 ...
= plot(x, y) y num [1:100] ©.543 @.696 2.439 2.238 3 ...
print(pp
Files Plots Packages Help Viewer
2 & zoom EExport~ @ “%» Publish
8:8 (Top Level) R Script
Console
Natural language support but running in an English locale
(o)
R is a collaborative project with many contributors.
Type 'contributors()' for more information and ™ - s} o Oq (o] o
'citation()' on how to cite R or R packages in publications. o o g o o
Q
. N 0® opm @ 8
Type 'demo()' for some demos, 'help()' for on-line help, or o O@J % o] S o] o
' ' h
he'lp;stm:t() F(?r an HTML browser interface to help. - < o Sog o 0048 o0 @
Type 'q()' to quit R. o oo © o
o o 076 @ & o8
o &5y © O
[Workspace loaded from ~/.RData] S A o [} & 8) o oo
o © o
— Q
[
o
o
I I I I I I
-1 0 1 2 3 4
X

An interactive and easy-to-use interface with many features

that make working with R easier
Slide courtesy of Quentin Ferry

tudio Interface

ece
Ol -
@] my_script.R

Source on Save = O /' -
Write your script here

rnorm(10@, 1, 1)
= rnorm(100, 1, 1)

plot(x, y)

pri. nt(p[:

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for meore information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()" for an HIML browser interface to help.
Type 'g()' to quit R.

[Workspace loaded from ~/.RData]

Console for entering R
commands

& Project: (None) ~

Environment History
[Import Dataset~ 3 List~
) Global Environment~

Values
p NULL Cempty)
X num [1:100] 2.46 0.287 -0.193 1.568 0.914 ...
y num [1:100] @.543 ©.696 2.439 2.238 3 ...

Files Plots Packages Help Viewer

o J Zoom EExportr @ 45 Publish
e}
™ o o o
o ° o]
o
N o o 9o o o
o 0" P o 5 8 o
g’% o o
> = o oo o) 0008000
00 0.0
© 00 © 76 o 5 q®:§g o o8°
e o o 9 o oo
o ° o
- o
' o
le]
T T T T T T
-1 0 1 2 3 4
X

Slide courtesy of Quentin Ferry

RStudio Interface

Script, data tables, etc...

my_script.R
Source on Save
Write your script he

rnorm(10@, 1, 1)
rnorm(100, 1, 1)

= plot(x, y)

print(p)

Console
Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

‘citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
"help.start()' for an HTML browser interface to help.

Type 'q()’ to quit R.

[Workspace loaded from ~/.RData]

RStudio

& Project: (Nane) ~

Environment History
2 [_#Import Dataset~ ¥ List~
% Global Environment -
Values
[NULL Cempty)
X num [1:100] 2.46 ©.287 -0.193 1.568 ©.914 ...
y num [1:100] 0.543 0.696 2.439 2.238 3 ...
Files Plots Packages Help Viewer
= & zoom | E|Export~ @ “%- Publish
o
, o
™ 5 e} ° O%
o o0 %o o o
[, @ a
o © ég&ﬂm o © 8 o
CO °
> = o 806 o OOO%OO @
0o 0o)
© e 6o® G © © o0&
o o o] Sl o
@ c o
o0 ° o
- | o
V
o
[s]
T T T T T T
-1 0 1 2 3 4
X

Slide courtesy of Quentin Ferry

RStudio Interface

Clickable list of
variables in memory

® ® RStudio
Qs =~ K Project: (None) ~
) my_script.R LuvnuinEnT sy
Source onSave = O, / ~ ~#Run | o% | _+Source - # [_#Import Dataset~ | & List+
Write your script here), Global Environment=
Values
x = rnorm(100, 1, 1)
y = rnorm(100, 1, 1) P NULL Cempty)
x num [1:100] 2.46 ©.287 -0.193 1.568 0.914 ...
p = plot(x, y) ¥ num [1:100] ©.543 ©.696 2.439 2.238 3 ...
print(ph
Files Plots Packages Help Viewer
= & Zoom EExportr @ y ‘% Publish
8:8 (Top Level) R Script
Console
Natural language support but running in an English locale
o
R is a collaborative project with many contributors. ©
Type 'contributors()' for more information and ™ o o] (e} o
Oenng : 3 . Lo o o B
citation()' on how to cite R or R packages in publications. o o o
o
) ™ T - 8
Type "demo()' for some demos, 'help(D' for on-line help, or (o] [e] e} OO [e] °
help.start() f(.JI" an HTML browser interface to help. - = o SOO o 0008 00 @
Type 'q()' to quit R. 0w _ 90 °® o8°
© 5@ © 0o o o
[Workspace loaded from ~/.RData] = o (o] @ o 00
o ° o
P fo!
! o
Q
T T T T T I
-1 0 1 2 3 4
X

Slide courtesy of Quentin Ferry

RStudio Interface

ece RStudio
ol 2~ & Project: (None) =
@) my_scriptR

Source on Save = O /' ~

Write your script here

rnorm(10@, 1, 1)
= rnorm(100, 1, 1)

plot(x, y)

pri. nt(pb

8:8 (Top Level)

Console

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
‘help.start()" for an HIML browser interface to help.
Type 'g()' to quit R.

[Workspace loaded from ~/.RData]

Environment History
~#Run %% < Source - 4 [| _f*Import Dataset~ i
"} Global Environment -
Values
NULL Cempty)
num [1:10@] 2.46 ©.287 -0.193 1.568 0.914 ...
num [1:100] ©.543 0.696 2.439 2,238 3 ...

Files Plots Packages Help Viewer
= 2 zoom EExport~ @ /5~ Publish
R Script

Plots, Files
Packages,
help etc...

b

Slide courtesy of Quentin Ferry

RStudio on Windows

File Edit Code View Plots Session Build Debug Tools Help

9~ - B2 = 55+ | Addins ~ & GMS_course -
@7 Untitled1* =[] | Environment History =1
&l @ [[Jsourceonsave | Q A~ i ~#Run | 5% | [#Source - = &% [| [#Import Dataset~ 3" List~ | (&
% X <- 5:20) Global Environment ~
3 142 values
4 bmi 24.5
é x <- ¢(0,2,-1,pi,10) v int [1:101] -50 -49 -48 -47 -46 -45 -44 -43 -42 -41 ...
x . . . _ , 5.7
7 % < c(0:5,10:15) X num [1:101] -6.28 -6.16 -6.03 -5.91 -5.78 ...
8 x x2 num [1:12] 0 1 4 9 16 25 100 121 144 169 ...
9 ¥ num [1:101] 2.45e-16 1.25e-01 2.49e-01 3.68e-01 4.82e-01 ...
10 y <- (1, 2, 3, 4, 5) z 0.333333333333333
11 x =y
12
121 | (Top Level) + R Script =
Console C:/Us Teaching/GMS, =
> 7 Files Plots Packages Help Viewer |
> par (mfrow=c(1,2)) i . =T =
> plot(x,y) EEEIX
> plot(x,y, las=1, xlab="x", ylab="sin(x)", type="1", main="Trigonometri R: Generic X-Y Plotting -
¢ functions™) |
> plot {graphics} R Documentation
> help.start()
1f nothing happens, you should open .)
‘http://127.0.0.1:21471/doc/html/index. htm1’ yourself Generic X-Y P|ott|ng
> help("plot")
> ?(plot) =
> help("plot™) Description [
>V <- -50:50
=V Generic function for plotting of & objects. For more details about the graphical parameter arguments, see pax.
[1] -50 -49 -48 -47 -46 -45 -44 -43 -42 -41 -40 -39 -38 -37 -36 -35
(7] -34 -33 -32 -31 -30 -29 -28 -27 -26 -25 -24 -23 -22 -21 -20 -19 For simple scatter plots, plot.default will be used. However, there are plot methods for many R objects, including functions, data.frames, density objects, etc. Use methods (plot) and the

[33] -18 -17 -16 -15 -14 -13 -12 -11 -10 -9 -8 -7 -6 -5 -4 -3
[49] -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13
[65] 14 15 16 7 18 19 20 21 22 23 24 25 26 7 28 29

documentation for these.

[81] 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 Usage

[97] 46 47 48 49 50
> x =- seq(-2%pi,2*pi,length=101) plot(x, ¥, ...)
>y <= sin(x)
> plot(x.y) Arguments

> plot(x,y, las=1, xlab="x", ylab="sin(x)", type="
¢ functions™)

, main="Trigonometri
x the coordinates of points in the plot. Alternatively, a single plotting structure, function or any R object with & plot method can be provided.

help("plot™) v the y coordinates of points in the plot, opfional if x is an appropriate structure.

. Arguments to be passed to methods, such as graphical parameters (see par). Many methods will accept the following arguments:

tvpe
- what type of plot should be drawn. Possible types are
= = "p" for points,
= "1 for lines,

YVYVYYVYYYVYYYY

- = "b" for both, >

23

The R interface (Windows)

Rrcuieabiy = o 51

File Edit View Misc Packages Windows Help

ElETE EEE Bl &)

e From here we can start working in R and do thinks like:
> Check what packages are already installed
° Install new packages
° Check the current working directory or change to a new one
> Access the help options

e As always, there are several ways to do things

24

Getting Started with R

Notation

e Throughout these slides, text in red denotes commands that you can
type in your R session (it 1s good to type them directly rather than copy
and paste to get used to syntax of commands and expressions, at least to
begin with)

e Note that commands are shown including the prompt sign > but ignore
this when entering the command. For example:

> x <= D

should be entered at the command line as:

X <= 2

e An extra > as well as the in-built R prompt will give an error:

> > x <= 5

Error: unexpected '>' in ">"

e Commands are shown in red, and output in blue (this is the convention

in the standard Windows R GUI but differs in other interfaces) o

R basics: command line

Getting used to the command line (in red):

Prompt [Whitespace] Command [Whitespace| Return

it T+0

(1] 3

\ J
! .
Results are output underneath (in blue). Elements of the output are

indexed by the square brackets

e The prompt tells you that R is waiting for you to enter a command —
type a valid command and press return or enter

e Some output may be printed to the console (as above) or a new variable
may be created for example

e The prompt symbol will be displayed again afterwards

e Sometimes a + appears instead of the usual > prompt symbol. This

means the previous line was incomplete while a command that 1s invalid

: 27
will generate an error message

R basics: assignment

Variable name Assignment operator (gets) value
> X <- 1

Inspect the contents of the new variable named x

> X

(1] 1

we can also write this as
> x =1

Note that the contents of any variable will be overwritten if later
assigned something else:

> x <= /4

> X

[1] 4

28

Naming variables

e R is case sensitive so X and X are different variables:
> X

Error: object "X" not found

e Variable names are chosen by the programmer and should start with a
letter followed by letters and numbers — informative names are helpful
for several reasons

* You can use . or _ to separate parts of a variable name but not
whitespace since this is used to detect the end of a token (‘word’). A
variable named data.norm or d.norm or dataNorm is fine, but trying to
assign a value to a variable named ‘data norm’ will give an error:

Error: unexpected symbol in "data norm"

e Elsewhere R ignores whitespace so the following commands are
equivalent:

> x<-4+73
> x <-4 + 3 29

Command syntax

> x <- c(1:5,8,9) # this creates a vector named ‘x’ containing some
numeric values

o If we forget the closing bracket, a + sign indicates the command is
incomplete:

> x <- ¢(1:5,8,9
)

e Some text editor programs highlight different types of syntax in
different colours or automatically close brackets and quotation marks to
help eliminate typing mistakes

e If we can’t simply continue our command, use Esc or control-C to
return to the prompt and start again

e There is also a useful command recall option — you can use the
up/down arrows to scroll through previously entered commands, which
can be edited or re-run to save typing again 30

Data Types and Structures

Common data structures (object types)

* To do anything useful in R, we need to use objects to hold
data or information and perform various operations on them

* The terms ‘object’, ‘variable’ and ‘data structure’ can all refer
generally to objects created in R. There are several different
data structures in R including:

° Vectors

o Factors

o Matrices

o Dataframes

o T .ists

32

Common data structures (object types)

e Objects can be created in many different ways and hold
different kinds of information

e Unlike other programming languages, there is no need to
initialise a variable or object in R (detine it before first use) — it
can simply be created and used directly

> x <= 1:10
> xX*2

* We’ll work through some examples of each type and look at
ways to access or manipulate the data contained within an
object

* Be aware that the type (class) of an object and data it contains
(numeric, character etc) can affect how it 1s treated by R~ 33

Vectors

e One-dimensional objects with length attribute

> x <= 1:10

I 2 |3 14|56 /|7|8]|9]|I0

> x <- c(l:5, 10:14)

I 2 | 3|4 |5 (1011 12}13] 14

Vectors

* Elements automatically added to create vector of appropriate
length
> x <- 1:15

e Can contain numeric or character data
> class (x)

[1] "1nteger"

> X <_ C("a", "b", "C")
alblc

> class (x)

[1] "character" 35

R basics: Factors

 Factors are useful for handling categorical data

> groups <- rep(c("wT", "MU"), each=3)

> groups

> class (groups) # character vector

> groups <- as.factor(groups) # coerce to factor
> class (groups) # factor

> groups

[1] WT WT WT MU MU MU
Levels: MU WT

> table(groups) # useful summary function giving the
number of entries for each level of the factor

> groups <- factor (groups, levels=c ("WT", "MU")) # re-

order the levels (default alphabetical) 36

Matrices

* Two-dimensional object with row and column number
attributes

> x <= 1:20

> y <- matrix(x, ncol=2, nrow=10)

> dim(y) # get the dimensions

(1] 10 2

> head(y) # shows the first 6 rows

> colnames (y) <- c("Col 1", "Col 2")

>y

e All columns of a matrix contain data of the same type. A
dataframe 1s a similar structure but the columns can be a
mixture of types — very useful for data with associated
descriptive information

37

Accessing elements of an object

e Square brackets are used to refer to specific elements or
subsets of a vector, factor, matrix or dataframe

> x <-= 1:20 # vector again

> x[5] # print 5™ element of x to screen

[1] 5

e For a 2 dimensional object need two indices separated by a
comma [row, column]

> yv[2,1] # specific element - second row,
column 1

> v[1l,] # all of first row

> y[1:5,1] # first 5 entries in column 1

38

The working directory

* There are many useful functions in R for manipulating data
stored in vectors, matrices or dataframes - best introduced
through practical exercises ot the online tutorial

* One important concept before we get started is the working
directory. If we want to read in data from existing files or
create new ones to save any plots or analysis results, R needs
to know where to find/save them.

> getwd () # tells us the current working directory

> setwd () # allows us to set a different working
directory

° The menu bar also has a ‘Change working directory’ option

39

Getting started...

e Online tutorial for R programming:

o

* To get set-up to start the tutorial, click the ‘Setup’ link in the
menu at the top of the page or navigate to
° http://swcarpentry.github.io/r-novice-inflammation/setup/

e Download the required data files, then return to the main
tutorial page and click on the ‘Analyzing Patient Data’ topic

* Try typing the first command into your R session:
o setwd ("~/Desktop/r-novice-inflammation/")

° You may get an error message 1f your actual directory structure does
not match the command (likely to happen on Windows machines)

> See guidance notes for details or ask for help

40

http://swcarpentry.github.io/r-novice-inflammation/

