

RNA-Seq Data Analysis 27-28 November, 2017

Taught module for DPhil programme in Genomic Medicine and Statistics

Organised and delivered by Bioinformatics Core at WHG:

Helen Lockstone M.Sc.

Ben Wright PhD

Santiago Revale, M.Sc.

Oxford Genomics Centre

The Wellcome Trust Centre for Human Genetics 😷

Santiago Revale, M.Sc.

Senior Bioinformatics Analyst, Bioinformatics Core Group

Transcriptome

Set and quantity of RNAs in a cell, tissue or organism, for a specific developmental stage or physiological condition.

Cell-specific expression Alternative splicing Metabolic state Transcriptome Stress Environmental conditions

Genome

Is dynamic!
It varies in time and space.

RNAseq

It's a technology that uses the NGS capabilities to reveal a snapshot of the presence and quantity of RNA in a sample at a given moment in time.

RNAseq: it's always about the goals!

At RNA transcript level, it provides the ability to:

- ✓ look at alternative gene spliced transcripts,
- ✓ post-transcriptional modifications,
- √ gene fusion,
- √ mutations/SNPs,
- ✓ changes in gene expression.

Can look at different populations of RNA to include:

- √ total RNA,
- ✓ mRNA,
- ✓ small RNA (miRNA, tRNA, ribosomal profiling, etc.)

Can be used to:

- ✓ determine exon/intron boundaries,
- \checkmark verify or amend previously annotated 5' and 3' gene boundaries.

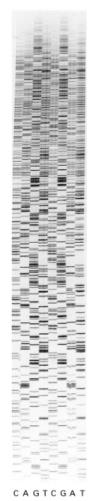
Common main goals

- Catalog all species of transcripts, e.g. messengers, non-coding, small, etc.
- Determine the transcriptional structure of genes, in terms of their starting sites, 5' and 3' ends, splicing patterns and other post-transcriptional modifications.
- Quantify the changes in the expression levels of each transcript during development and/or in different conditions.

Practical approaches to RNAseq

- Enriched for polyadenylated transcripts (polyA)

 PolyA enrichment is good for mature protein coding transcripts requires good quality total RNA.
- Depleted for ribosomal RNA transcripts (ribodepleted)
 Ribodepletion is good for including all non-polyadenylated RNA also good for degraded material.
- Amplified from low input material (SMARTer)


 SMARTer is good for low input samples, down to a single cell requires good quality total RNA or fresh cell lysate.
- Small RNA species
 Small RNA require a separate preparation but can be run in parallel to polyA.
- 3' mRNA
 3'mRNA is good to minimise costs/maximise sequencing lane capacity some tolerance to degraded material.

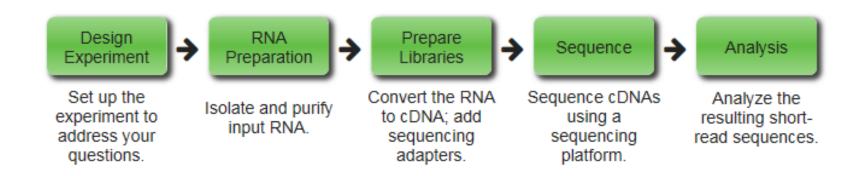
Genomics Platforms

Sequencing Outputs

Illumina HiSeq 4000

Output range	105 – 1500 Gb		
Reads per run	2.1 – 5 billion		
Max. read length	2 x 150 bp		
Run time	< 1 – 3.5 days		
Samples sequenced per:	Flowcell	Lane	
polyA Ribodepleted 3' mRNA CHIPseq	80 40 384 80	10 5 48 10	

Illumina HiSeq 2500


Output range	9 – 1000 Gb		
Reads per run	0.3 – 4 billion		
Max. read length	2 x 250 bp		
Run time	< 1 – 6 days		
Samples sequenced per:	Run	Lane	
Small RNA	168	21	

Typical RNAseq experiment

Experimental Design

How is an experiment designed?

While a good design does not guarantee a successful experiment, a suitably bad design guarantees failure.

Tissue specificity

SKIN 0031424 keratinization 2.9 \times 10⁻¹⁴ 0006955 immune response 3.5 \times 10⁻¹³ 0031069 hair follicle morphogenesis 4.1 \times 10⁻⁷

LUNG0030324lung development 6.2×10^{-16} 0006954inflammatory response 2.1×10^{-15} 0043330response to exogenous dsRNA 6.2×10^{-6}

ADRENAL 0006700 C21-steroid hormone biosynthesis 4.6×10^{-8} 0017157 regulation of exocytosis 4.2×10^{-4} 0006584 catecholamine metabolism 1.4×10^{-3}

KIDNEY 0001822 kidney development 1.4×10^{-6} 0007588 excretion 1.3×10^{-3} 0001736 establishment of planar polarity 2.9×10^{-3}

MUSCLE0006941striated muscle contraction 7.7×10^{-11} 0005977glycogen metabolism 1.8×10^{-9} 0045445myoblast differentiation 8.0×10^{-7}

TESTIS
0007059 chromosome segregation
0007276 gametogenesis
0006349 imprinting
9.1 × 10⁻¹⁵
8.1 × 10⁻⁴
1.5 × 10⁻³

 $\begin{array}{c} \text{BRAIN} \\ \text{0007268} \\ \text{synaptic transmission} \\ \text{0016358} \\ \text{dendrite morphogenesis} \\ \text{0007611} \\ \text{learning or memory} \end{array} \begin{array}{c} 8.9 \times 10^{-41} \\ \text{1.2} \times 10^{-10} \\ \text{7.9} \times 10^{-6} \end{array}$

THYMUS 0019882 antigen presentation 7.1 \times 10⁻²¹ 0045059 positive thymic T cell selection 9.8 \times 10⁻⁸ 0045060 negative thymic T cell selection 2.6 \times 10⁻⁷

HEART0006099tricarboxylic acid cycle 2.5×10^{-15} 0045214sarcomere organization 7.5×10^{-12} 0008016regulation of heart contraction rate 8.3×10^{-7}

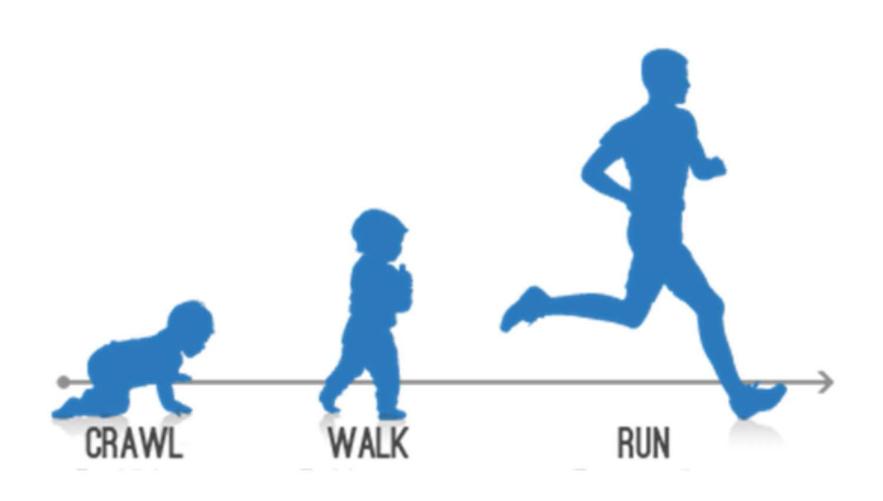
 LIVER
 0008203
 cholesterol metabolism
 2.6×10^{-8}

 0007596
 blood coagulation
 2.0×10^{-7}

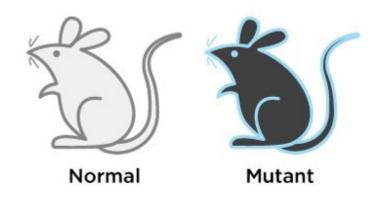
 0000050
 urea cycle
 5.0×10^{-5}

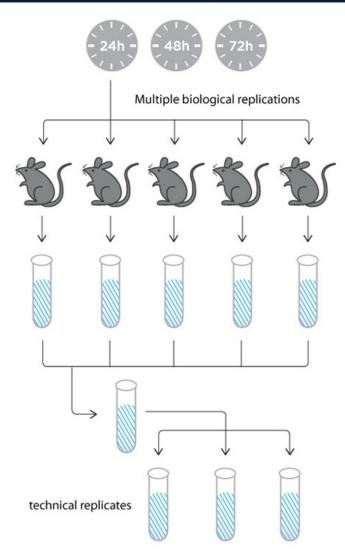
SPLEEN0050766positive regulation of phagocytosis 4.5×10^{-9} 0030183B cell differentiation 1.5×10^{-7} 0030217T cell differentiation 2.6×10^{-7}

| INTESTINE | 0006955 | immune response | 7.0×10^{-13} | 0007586 | digestion | 9.3×10^{-5} | 4.6×10^{-4}

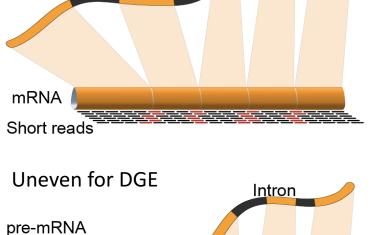

OVARY 0007059 chromosome segregation 1.0×10^{-12} 0007276 gametogenesis 8.6×10^{-8} 0006349 imprinting 3.5×10^{-5}

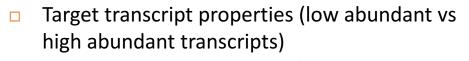
Time dependent

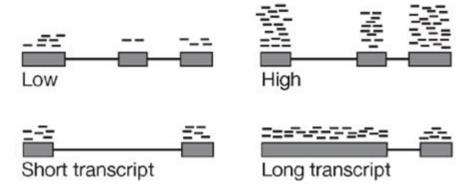




Replicates (technical / biological)




Coverage

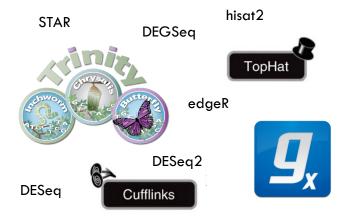


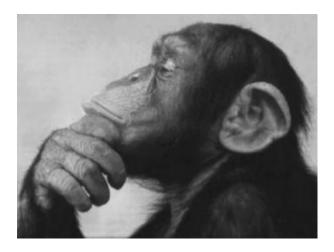
Even for annotation Intron pre-mRNA Exon **mRNA**

Exon

- Allele might not be detected (not in the genome/not being expressed)
- Estimate expression of each allele

mRNA


Short reads



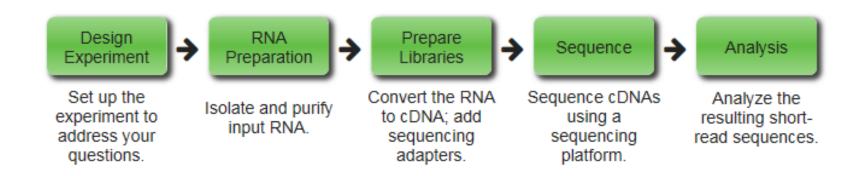
Subjectivity of the analysis

- ✓ Multitude of algorithms and pipelines available.
- ✓ Most approaches correct, but have to be tailored to the needs of the investigators in order to better capture the desired effect.

Data management & Downstream interpretation of the data

- ✓ Several Gigabytes (70-75 Gb Avg)
- ✓ Different layers of interpretations have to be considered (e.g. biological, clinical, regulatory functions, etc.)

Recommendations based upon experimental objectives.


Criteria	Annotation	Differential Gene Expression
Biological replicates	Not necessary but can be useful	Essential
Coverage across the transcript	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not as important; however the only reads that can be used are those that are uniquely mappable.
Depth of sequencing	High enough to maximize coverage of rare transcripts and transcriptional isoforms	High enough to infer accurrate statistics
Role of sequencing depth	Obtain reads that overlap along the length of the transcript	Get enough counts of each transcript such that statistical inferences can be made
DSN	Useful for removing abundant transcripts so that more reads come from rarer transcripts	Not recommended since it can skew counts
Stranded library prep	Important for de Novo transcript assembly and identifying true anti-sense trancripts	Not generally required especially if there is a reference genome
Long reads (>80 bp)	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not generally required especially if there is a reference genome
Paired-end reads	Important for de Novo transcript assembly and identifying transcriptional isoforms	Not important

Typical RNAseq experiment

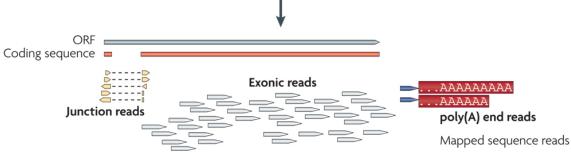
Typical RNAseq experiment

Convert the RNA to cDNA; add sequencing adapters. AAAAAAA mRNA

AAAAAAAA

RNA fragments

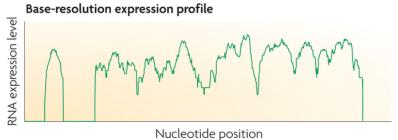
or


CDNA

EST library

with adaptors

ATCACAGTGGGACTCCATAAATTTTTCT
CGAAGGACCAGCAGAAACGAGAGAAAAA
GGACAGAGTCCCCAGCGGGCTGAAGGGG
ATGAAACATTAAAGTCAAACAATATGAA


Short sequence reads

Analysis

Analyze the resulting shortread sequences.

RNA Preparation

Isolate and purify input RNA.

Sequence

Sequence cDNAs using a sequencing platform.

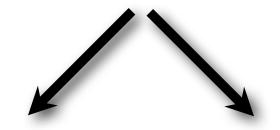
Data Analysis

Stereotypical RNA-seq analysis pipeline

- 1. Demultiplex, filter, and trim sequencing reads.
- 2. Normalize sequencing reads (if performing *de novo* assembly)
- 3. de novo assembly of transcripts (if ref genome is not available)
- 4. Map sequencing reads to reference genome or transcriptome
- Annotate transcripts assembled or to which reads have been mapped
- 6. "Count" mapped reads to estimate transcript abundance
- Perform statistical analysis to identify differential expression (or differential splicing) among samples or treatments
- 8. Perform multivariate statistical analysis/visualization to assess transcriptome-wide differences among samples

1. Read processing

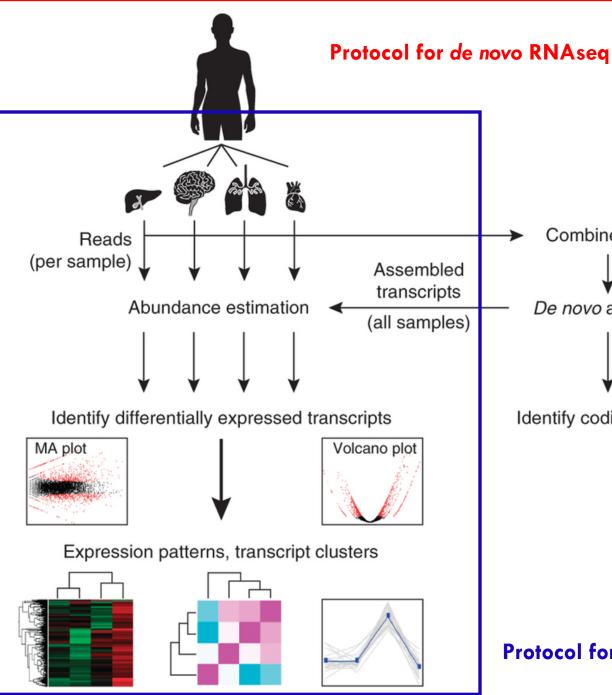
Table 5.1 Read Processing Software				For <i>de novo</i> assembly	
Software	De- mulitplexing	Adaptor Trimming	Quality Filtering/ Trimming	K-mer Filtering	K-mer Normalization
ASTX-Toolkit	~	~	✓		
Soby	~	~			
hmer				~	~
NGS_backbone		~	✓		
stacks	~	~	~	~	✓
rimmomatic		~	✓		
iopieces	~	~	~		



de novo assembly or reference mapping?

When to use each?

de novo


(do not know the transcriptome)
(main goal is to discover NOT to quantify)

reference

(do know the transcriptome)
(main goal is to quantify NOT to discover)

Combine reads

Normalization?

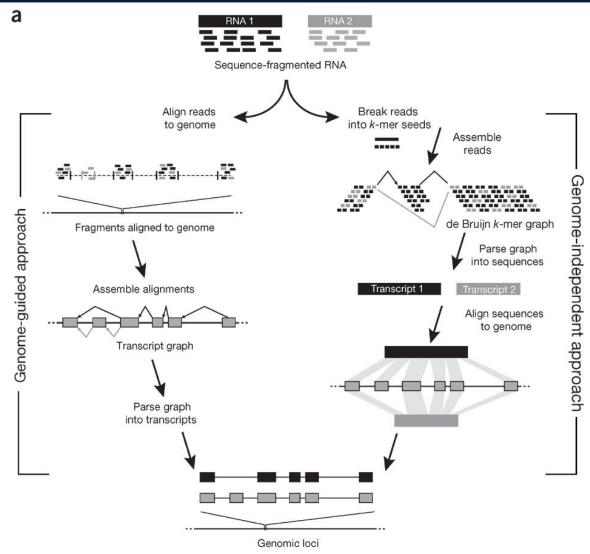
De novo assembly

Assembled transcripts

Identify coding regions

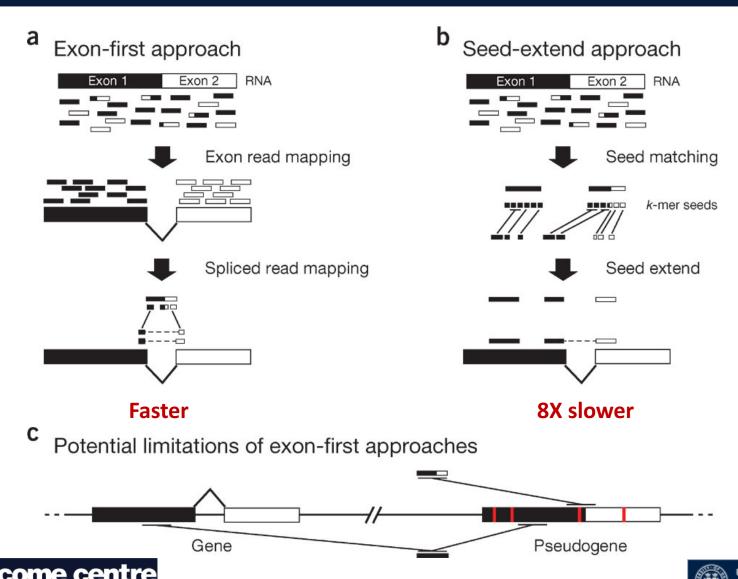
Functional annotation

Annotated transcriptome

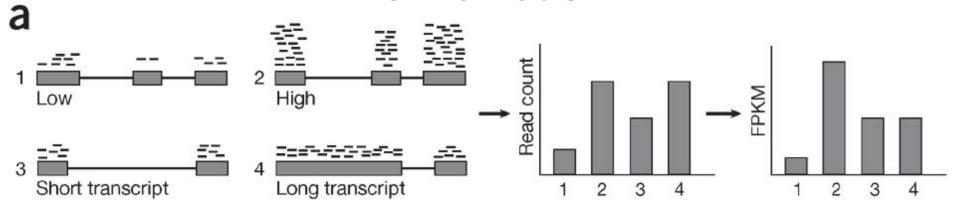


Protocol for reference-based RNAseq

3. de novo transcriptome assembly



4. Map RNA data against genome


e.g. GSNAP

6. Expression quantification

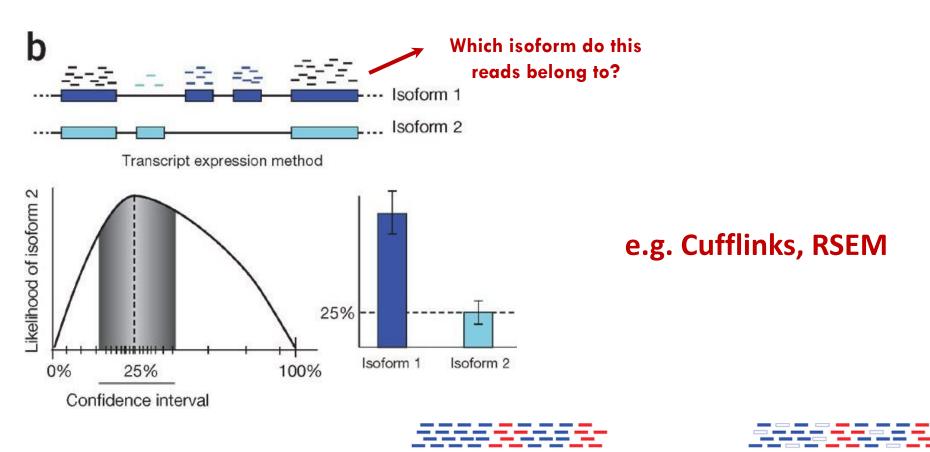
Normalization

<u>Influence of length</u>: Counts are proportional to the transcript length times the mRNA expression level.

Influence of sequencing depth: The higher sequencing depth, the higher counts.

"Gene counts" should be corrected in order to minimize these biases: normalization.

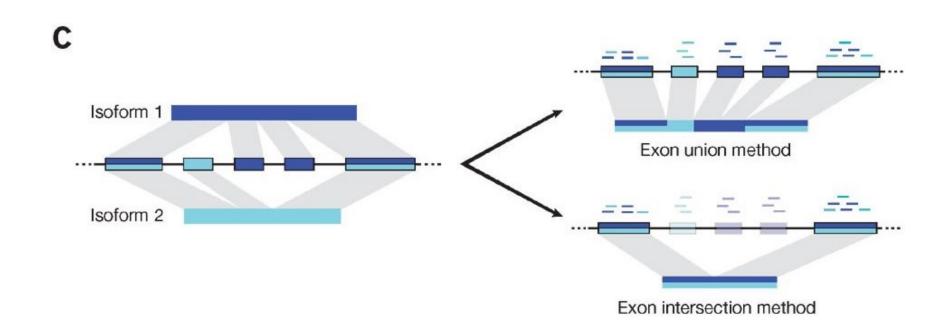
Statistical model should take into account "length" and "sequencing depth".


Some normalization methods

- **RPKM** (Mortazavi *et al.*, 2008): Counts are divided by the transcript length (kb) times the total number of millions of mapped reads.
- **Upper-quartile** (Bullard *et al.*, 2010): Counts are divided by upper-quartile of counts for transcripts with at least one read times the square root of transcript length.
- Quantiles, as in microarray normalization (Irizarry et al., 2003).
- **FPKM** (Trapnell *et al.*, 2010): Instead of counts, Cufflinks software generates FPKM values (Fragments Per Kilobase of exon per Million fragments mapped) to estimate gene expression, which are analogous to RPKM.

6. Expression quantification

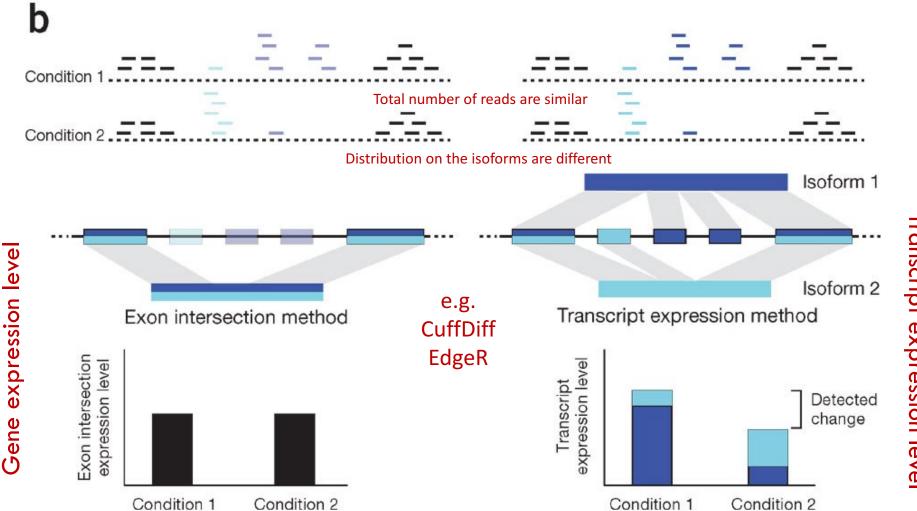
Isoforms



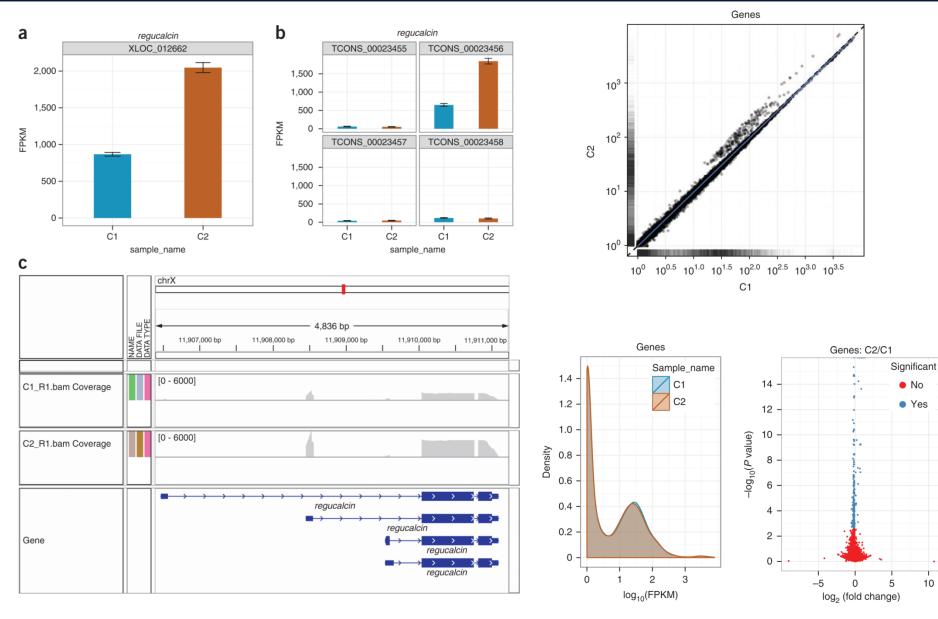
RSEM

6. Expression quantification

Gene expression

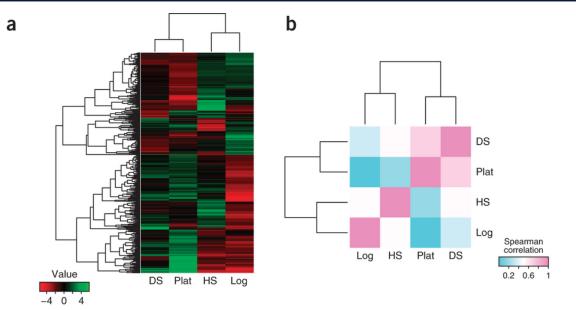


7. Differential expression analysis

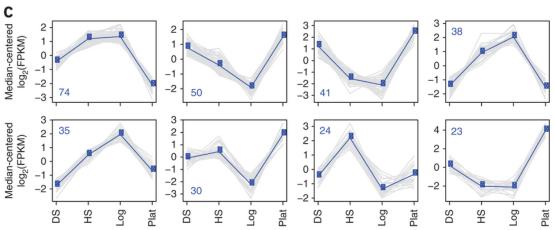


Iranscript expression leve

8. Data visualization



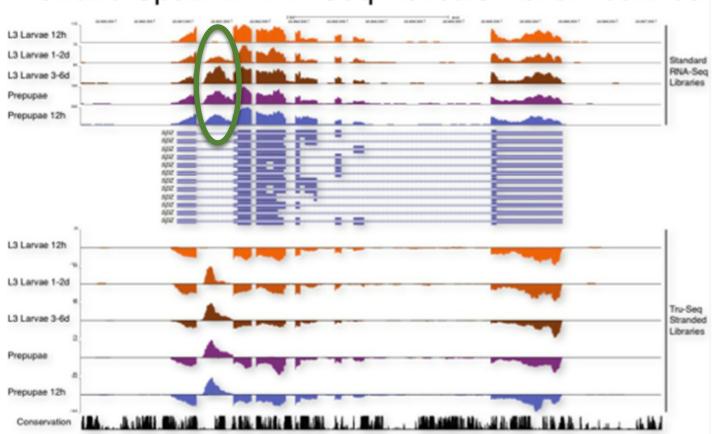
8. Data visualization



Hierarchical clustering of transcripts and samples.

Spearman correlation matrix

Transcript clusters extracted from the hierarchical clustering.



8. Data visualization

Strand-Specific RNA-Seq Reveals Novel Features

spz gene Drosophila

transcripts first intron missinterpreted as new exon

spz gene Drosophila

transcripts first intron are from opposite strand is a new protein

- 1. Refine Transcriptomes
- 2. Focus on Non-Coding RNAs

References

- Cresko Lab, University of Oregon. RNA-seqlopedia. http://rnaseq.uoregon.edu/
- Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Met. 2011; 8: 469–477.
- Grabherr MG, Haas BJ, Yassour M, Levin JZ, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology. 2011; 29: 644–652.
- Haas BJ, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nature Protocols. 2013; 8: 1494–1512.
- Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009 Jan; 10(1): 57–63.
- List of RNAseq bioinformatic tools. http://en.wikipedia.org/wiki/List_of_RNA-Seq_bioinformatics_tools

