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e Goals:

- An overview of process used to get from raw reads to count
tables for differential expression analysis.

— Description of common file formats involved.
- Know what drives differences between samples.

— Recognise common Quality Control (QC) issues in data.
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* Presentation:

- Concentrate on ditferential expression projects.

- An overview of a typical RNA Sequencing pipeline.

- Roundup of common QC issues.

- Examples of tools used in the default pipelines in WHG
 Practical:

- Work with toy datasets to recognise QC problems.
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« Timetable:
- 13:30 This presentation
- 14:30 Start practical
- 15:00 Refreshments and continued practical

- 16:00 Finish
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Reads to Leads

 Per-read filtering

- Use metrics from the sequencing pipeline to exclude reads
of low overall quality.

— Usually an option during the mapping step.
* Mapping

- Map to transcriptome for the organism.

- HiSat2
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Reads to Leads

* Deduplication

- Atool identities duplicate reads and excludes them from
further analysis.

— Picard MarkDuplicates

» Tabularisation
— Match mapped reads to features (i.e. genes).
— Produce count table.

— featureCounts
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Reads to Leads

e Normalisation

- Adjusts count table to take into account any variation in
counts not due to gene expression.

- Many methods, including:

« Counts per million (cpm) - adjusts for library size.

 Transcripts per million (tpm) - adjusts for library size and gene

length.

 Variance stabilisation (vsn) - adjusts so that the variance is not
dependent on the mean.

- DESeq2 (R package)
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Reads to Leads

 Per-gene filtering

— Where the overall level of expression is very low, reliable
analysis cannot be performed.

- Identity genes with low expression across all experimental
groups and filter them out.

- 1If a gene of interest is filtered out in this way, no work-
around other than a repeat of sequencing at greater depth.
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What Reads are Removed?

* Poor quality reads. o e W
e Unmapped reads. m

— Do not map at all.

* Duplicate reads.

Reads that do not map to a unique gene.
— Map to intron or intergenic region.

- Do not map uniquely.

Reads for marginally-expressed genes.
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Assignment Summaries

« Tabularisation attempts to match reads to features.
- Sometimes this cannot be done.

* In the output of featureCounts:
- Assigned: Appears in gene counts table.

- Ambiguity: The read maps to a unique location but spans
multiple features.

L - MultiMapping: The read maps to more than one location.
— NoFeatures: Reads that do not overlap a defined feature.

— Unmapped: Were not mapped at all.
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Assignment Summaries

* Some categories can be empty it those reads were discarded
earlier in the process, or are if they only discarded it
specific options are set:

- MappingQuality
- FragmentLength
— Chimera

L — Secondary

— Nonjunction

— Duplicate
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File Formats - fa

* fasta or fa.

 Input to mapping tools.

» Used tfor reference genome for an organism.

* Stores sequence information, one section per chromosome.

e Text format.
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File Formats - fastq

 Typical output from sequencing machines.
 Input to mapping tools.

 Stores read data and quality information.

* Reads have unique identifiers.

 Text format.

e Archival standard.
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File Formats - bam

Output from mapping tools.

Many tools have bam files as input and output.
Input to tools that prepare count tables.

Stores:

- All data from the source fastq regarding reads and quality.
- Mapping position for each read plus mapping quality.

Compressed format.

Another archival standard.
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File Formats - gtf / gff

 Input for tabularisation.
» Contains positions of the features of interest.
— Gene-level

— Exon-level

* By chromosome, start, end for each feature.

Text format.
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File Formats - Count Tables

Output from tools that prepare tables.
Stores summary of read counts per gene per sample.
No read or quality information included.

Often includes meta-data, such as totals of unmapped
reads.

Text format.
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What Drives Differences?

Quality issues can arise at every stage of the process:
- Sample gathering

e Batch effects.

« Sample labelling issues.
- Lab work

e (Contamination.
» Low input material.

 Batch effects.
- Sequencing technicalities

« Sequencing machine problems.

e Computational anomalies.
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Dealing with Quality Issues

e Many of these quality problems manifest as a sample or set

of samples having a very ditferent protile to the rest of the
data.

— Treated as outliers.

- Outliers generally have to be discarded betore analysis.

— 1If the problem is limited to a particular middle step, the
sample can be sequenced again.

« Some problems have a systematic etfect on the samples and
can be adjusted for in the analysis.
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What Drives Differences?

» Technical aspects:
— Tissue type.
- Kit type.

— Other experimental variables that should have been held
constant for the entire project.
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What Drives Differences?

 Ditferential expression:

Treatment levels.
Disease condition.
Knockdown models.

Time factors.
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Visualising OC

 Visual inspection can identify quality issues.
— QOutlier samples.
- Potential batch etfects.
— Possible sample swaps or other naming problems.

 Often requires confirmation of the issue from outside the
data before it can be adjusted for.

 Usually a problem can be seen in multiple visualisations.

» Being able to recognise common issues from visualisations
saves time.
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Visualising QC - Read Counts

« Shows total reads and
proportion of reads
assigned to ditferent
categories.

reads

e Identifies outliers on the
basis of total reads or read
assignment.

Million

* Quick way to spot failed
samples.
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Visualising OC - Heatmaps

Show similarity between
samples.

Many ditferent ways ot
measuring that similarity.

Can identity sample
groups.

Do not indicate underlying
structure.
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Visualising OC - Dendrograms
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Visualising OC - PCA and MDS

— 'Principal Components
Analysis'.

- Multidimensional
technique for revealing
underlying clustering,

- Identity multiple
separate groups.

— Provides indication of
how much variability
lies in each dimension.

« MDS

— 'Multidimensional
Scaling' plots.

- Multidimensional
technique for revealing
underlying clustering.

- Identity multiple
separate groups.
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Visualising OC - PCA and MDS
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Visualising OC - PCA and MDS

e The most common plots show only the first 2 dimensions of
these techniques.

» Higher dimensions can show more layers of information
regarding the structure of the data.

* Ideally, each dimension will correspond to one source of
variation,

« Dimension 1 might be treated/untreated.

* Dimension 2 might be time since treatment.
* Dimension 3 might be a batch effect.

* Etc.

Faww UNIVERSITY OF

W) OXFORD




Oxford

Genomics
CENTRE

Visualising QC - Limitations

* Good QC plots do not guarantee a successtul project with
useful analysis.

* If gene expression differs only slightly between
experimental groups, the underlying pattern can be very
ditficult to spot visually if the visualisation is based on the

full data.

* When there are multiple factors in the experiment, some
may have a much larger effect on gene expression and
make the ditferences of others harder to spot visually.
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OC Issues

* QC problems of a given type atfect the visualisations in a
consistent way.

 Visual inspection is therefore a powerful tool for
identitying what type of problem has been encountered.

 This does not replace formal statistical techniques for
finding clusters or determining significant ditferences in
expression between groups.
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OC Issues - Failed Sample

 Characteristics:
- Significantly lower total read count.

- Proportion of read categories ditferent from the rest of the
data.

- Isolated in PCA and MSD plots, sometimes to the point
that the rest of the plot is unreadable.

e Solution:

- Exclude that sample and re-examine QC for further issues.
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OC Issues - Batch Effect

e Characteristics:

- Experimental groups expected to be a single cluster are
split into separate clusters.

- These splits are in a consistent direction across different
experimental groups.

e Solution:

- Verity that a potential lab-based batch etfect corresponds
to the pattern in QC.

- Introduce a variable for that batch etfect in the analysis.
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OCiIssues - Sample Mix Ups

Characteristics:

— Clusters exist in the data, but do not correspond to the
experimental groups.

— The number of samples in each cluster make sense for the
experiment.

Solution:

- Double check sample naming. If an error is found, correct
the names and continue checking.

- Never try to use the data to infer the correct naming.
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OC Issues - Failed Project

e Characteristics:
- No visible clustering.

- Or variation very small.

e Solution:

- Conduct analysis and see it there is truly nothing to be
found.

- Work with the lab to discover what went wrong,

- Repeat the experiment.
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* HiSat2

— https://ccb.jhu.edu/software/hisat2/index.shtml
* Picard

— http://broadinstitute.github.io/picard/
e FeatureCounts

- http://bioinf.wehi.edu.au/featureCounts/



https://ccb.jhu.edu/software/hisat2/index.shtml
http://broadinstitute.github.io/picard/
http://bioinf.wehi.edu.au/featureCounts/
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