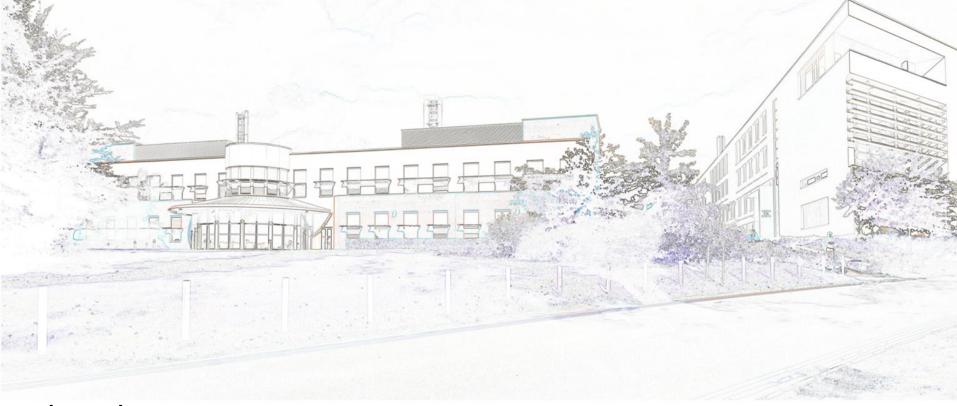


RNA-Seq Data Analysis 27-28 November, 2017

Taught module for DPhil programme in Genomic Medicine and Statistics

Organised by Bioinformatics Core at WHG:
Helen Lockstone M.Sc.
Ben Wright PhD
Santiago Revale, M.Sc.



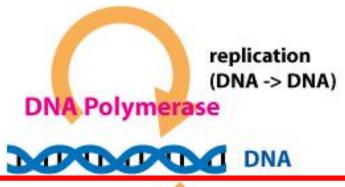
Oxford Genomics Centre

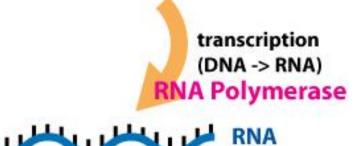
The Wellcome Trust Centre for Human Genetics : 💞

Helen LockstoneBioinformatics Core Group

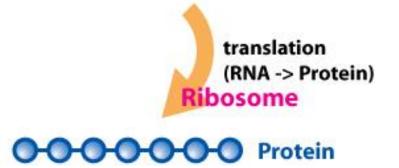
Overview

- General remarks on gene expression technology and data (RNA-Seq and microarray)
- Experimental design considerations
- Hypothesis testing
- Differential expression analysis using R/BioConductor
- Practical session working with a cancer dataset



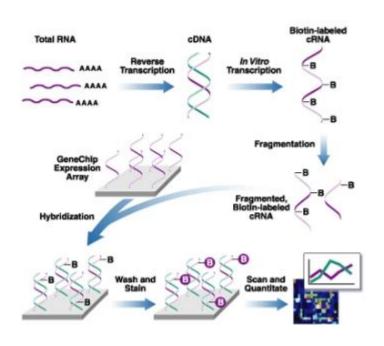


A brief history of gene expression

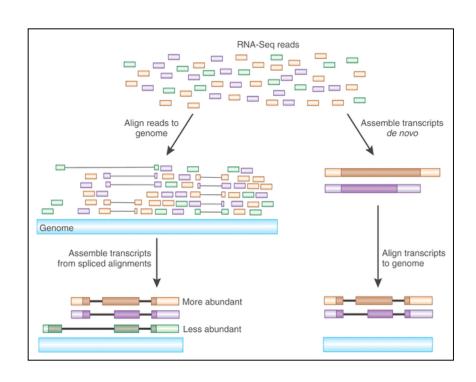

Transcriptome Profiling

Transcriptome can be measured by microarrays or RNA-Seq

Widely-used techniques, provide insight into biological system, albeit a snapshot – highly dynamic and complex process (splicing, gene methylation, RNA stability/degradation, miRNA regulation etc)



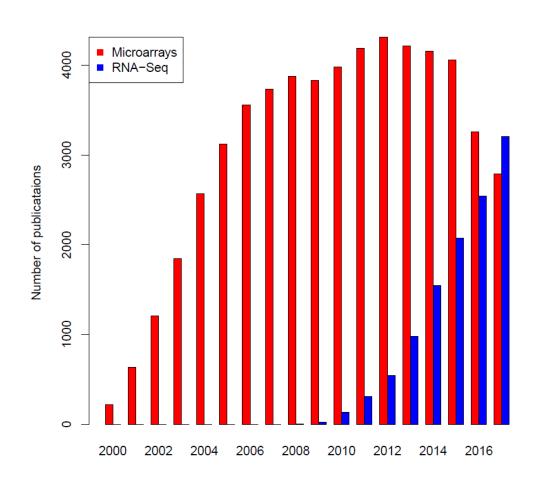
Two key technologies



Microarrays

Complementary hybridisation early 1990s onwards

RNA-Seq


Next-generation sequencing 2007 onwards

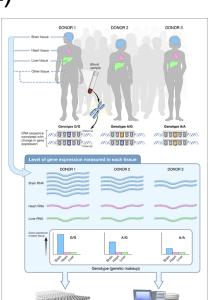
Publications by Technology

Which technology to use?

- Microarrays and RNA-Seq are complementary technologies (despite common perception that RNA-Seq superior)
- Choice usually depends how detailed a characterisation of the transcriptome is required
 - Gene level changes => microarrays sufficient, reliable and cheap
 - Isoform structure, splicing, novel transcripts => RNA-Seq
 - Note that exon arrays can also assess splicing
- Both report relative gene expression level estimates, influenced by a range of factors and biases inherent to each technology
- Fold-change concordance reasonably high between arrays and RNA-Seq

RNA-Seq Myths and Caveats

- Can detect low expressed genes better than arrays
 - Possibly but may need prohibitively expensive sequencing depth
 - In typical designs, up to half of all genes are too low expressed to be reliably detected (if at all)
 - Additional sequencing will still tend to be of highly expressed genes, so lower end hard to interrogate
- The issue of low counts is even more problematic for splicing analysis where you may be comparing exons or junctionspanning reads
- What you sequence in an RNA-Seq library influences your data for all genes – very inter-dependent in a way that arrays are not


Large-scale gene expression projects

- ENCODE
- Allen brain atlas
- ALLEN BRAIN ATLAS
- Genotype-Tissue Expression Project (GTEx)
- TGCA

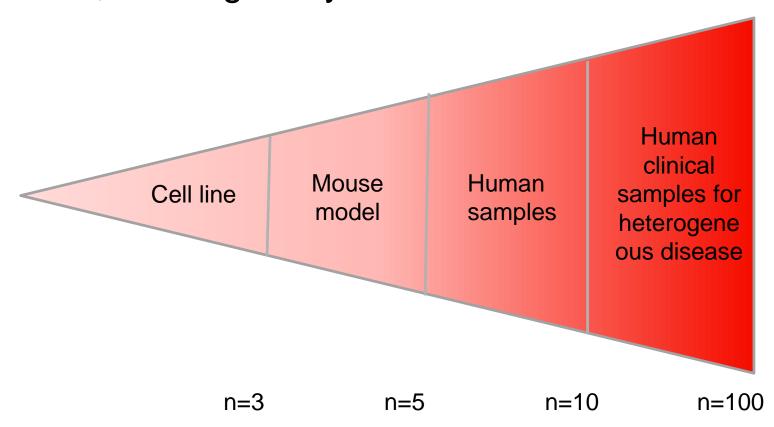
- Public repositories
 - Gene Expression Omnibus (GEO) http://www.ncbi.nlm.nih.gov/geo/
 - Sequence Read Archive (SRA)
 - http://www.ncbi.nlm.nih.gov/sra

Typical experimental designs

- Disease vs control
- Gene knockdown/knockout vs wildtype
- Effect of treatment/stimulus/drug
- Clinical applications
 - Tumour-normal pairs
 - Good prognosis vs poor prognosis
 - Patient subgroups responding to different treatments
 - 'Gene signature' to predict who will respond well to a given treatment
- Time course
- Different tissues/stages of development

Limitations of transcriptomic profiling

- Comprehensive but inherently limited to descriptive results, no matter how well experiment performed or data analysed
- Produce large amounts of information; subjective interpretation, can be mined in different ways, always much left untouched (often publically available)
- Expensive and time-consuming so often published as a standalone experiment
- However best used as starting point for further work following up hypotheses from gene expression data to uncover mechanistic/causal effects can produce elegant studies



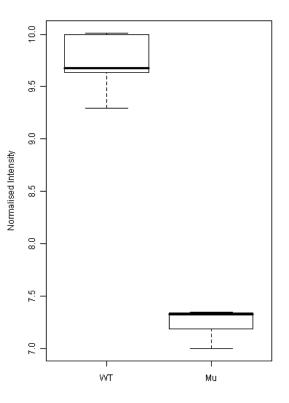
Experimental design considerations

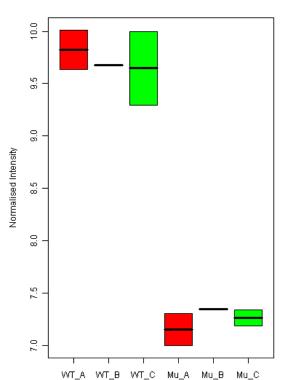
Replication

 Depends on context – type of sample, size of effect, heterogeneity within conditions

Sequencing Depth

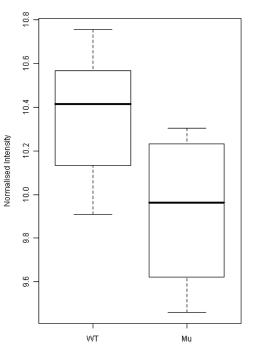
- Number of reads required per sample depends on experimental question
- HiSeq4000 one lane = 250 million reads
- Multiplexing e.g. 10-plex human samples gives ~25m reads for each, plenty for quantifying gene expression (except for very low/unexpressed genes)
- Higher depth required in some situations e.g. for splicing analysis, certain library prep methods (ribo-depletion)

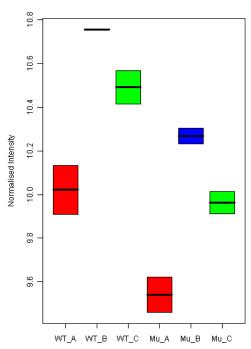

Potential confounds and covariates



- Gene expression data highly sensitive to many factors
 - Lab operator/conditions, day performed, sample collection methods, RNA extraction day and so on
 - Often influence the data to greater extent than any experimental effects
 - Any step where treated and control samples are handled differently could confound the experiment
 - If split into batches containing mix of treated/control samples, can account for potential effects in analysis
- Also be aware of potential effects from factors unrelated to the experiment on the data, which may need to be accounted for to optimise analysis

Gene not influenced by litter





- Wt and Mut groups
- Three different litters
- Top gene ~ 5x
 higher expression in
 Wt compared to
 Mut
- Similarly expressed across litters in both genotypes

Gene with strong litter effect

- Within litters, consistent pattern of higher expression in WT vs Mut
- Within genotypes, B>C>A expression depends on litter
- Accounting for this source of variability increases power to detect changes of interest