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« General remarks on gene expression technology and
data (RNA-Seq and microarray)

« Experimental design considerations

« Hypothesis testing

* Differential expression analysis using R/BioConductor

 Practical session working with a cancer dataset
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A brief history of gene
expression




Transcriptome Profiling

replication
(DNA -> DNA)
DNA Polymerase
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transcription
(DNA -> RNA)
RNA Polymerase
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Transcriptome can be
measured by microarrays or
RNA-Seq

translation
(RNA -> Protein)
Ribosome

Protein
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Widely-used techniques, provide insight
into biological system, albeit a snapshot
— highly dynamic and complex process
(splicing, gene methylation, RNA
stability/degradation, miRNA regulation
etc)
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Two key technologies Gendmics

Microarrays
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Publications by Technology Gendmics
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Which technology to use? Gendmics
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« Microarrays and RNA-Seq are complementary technologies
(despite common perception that RNA-Seq superior)

* Choice usually depends how detailed a characterisation of the
transcriptome is required

* Gene level changes => microarrays sufficient, reliable and cheap
 Isoform structure, splicing, novel transcripts => RNA-Seq
* Note that exon arrays can also assess splicing

- Both report relative gene expression level estimates,
iInfluenced by a range of factors and biases inherent to each
technology

» Fold-change concordance reasonably high between arrays and RNA-
Seq
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RNA-Seq Myths and Caveats Gendmics
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« Can detect low expressed genes better than arrays
« Possibly but may need prohibitively expensive sequencing depth

* In typical designs, up to half of all genes are too low expressed to
be reliably detected (if at all)

« Additional sequencing will still tend to be of highly expressed
genes, so lower end hard to interrogate

* The issue of low counts is even more problematic for splicing
analysis where you may be comparing exons or junction-
spanning reads

« What you sequence in an RNA-Seq library influences your
data for all genes — very inter-dependent in a way that arrays
are not
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Large-scale gene expression projects Gendmics
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- ENCODE 7
* Allen brain atlas ALLEN BRAIN ATLAS /

» Genotype-Tissue Expression Project (GTEX)

« TGCA —Ta

) PUb“C repOS|t0r|eS HE CANCER GENOME ATLA.S?T
« Gene Expression Omnibus (GEO)
http://www.ncbi.nlm.nih.gov/geo/
« Sequence Read Archive (SRA)

* http://www.ncbi.nlm.nih.gov/sra
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Typical experimental designs e
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Disease vs control

Gene knockdown/knockout vs wildtype

Effect of treatment/stimulus/drug

Clinical applications
« Tumour-normal pairs
» Good prognosis vs poor prognosis
« Patient subgroups responding to different treatments
» ‘Gene signature’ to predict who will respond well to a given treatment

Time course

Different tissues/stages of development
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Limitations of transcriptomic profiling  Gendmics
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« Comprehensive but inherently limited to descriptive results, no
matter how well experiment performed or data analysed

* Produce large amounts of information; subjective
interpretation, can be mined Iin different ways, always much left
untouched (often publically available)

« Expensive and time-consuming so often published as a stand-
alone experiment

« However best used as starting point for further work - following
up hypotheses from gene expression data to uncover
mechanistic/causal effects can produce elegant studies
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Experimental design
considerations




Replication

« Depends on context — type of sample, size of
effect, heterogeneity within conditions

Mouse Human

Cell line
model sample

n=3 n=5 n=10 n=100



Number of reads required per sample
depends on experimental question

HiSeq4000 — one lane = 250 million reads

Multiplexing e.g. 10-plex human samples
gives ~25m reads for each, plenty for
guantifying gene expression (except for
very low/unexpressed genes)

Higher depth required in some situations
e.g. for splicing analysis, certain library
prep methods (ribo-depletion)



« (Gene expression data highly sensitive to many factors

— Lab operator/conditions, day performed, sample collection
methods, RNA extraction day and so on

— Often influence the data to greater extent than any experimental
effects

— Any step where treated and control samples are handled
differently could confound the experiment

— If split into batches containing mix of treated/control samples,
can account for potential effects in analysis
« Also be aware of potential effects from factors unrelated
to the experiment on the data, which may need to be
accounted for to optimise analysis
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Wt and Mut groups

Three different
litters

Top gene ~ 5x
higher expression in
Wt compared to
Mut

Similarly expressed
across litters in both
genotypes



Within litters, consistent
pattern of higher
expression in WT vs Mut

Within genotypes, B>C>A —
expression depends on
litter

Accounting for this source
of variability increases
power to detect changes of
Interest



