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Overview

• Development of gene expression technology (RNA-Seq
and microarrays) and associated methods/tools

• Experimental design considerations

• Hypothesis testing overview

• Differential expression analysis using R/BioConductor

• Practical session working with a cancer dataset



A brief history of gene 
expression



Transcriptome Profiling

Transcriptome can be 
measured by microarrays or 

RNA-Seq

Widely-used techniques, provide insight 

into biological system, albeit a snapshot 

– highly dynamic and complex process 

(splicing, gene methylation, RNA 

stability/degradation, miRNA regulation 

etc)



Two key technologies

Microarrays RNA-Seq

Complementary hybridisation Next-generation sequencing

(early 1990s onwards) (~2008 onwards)



Transcriptomics Approaches

 Microarray technology (1990s onwards): based on pre-designed 
short oligonucleotide sequences, or probes, hybridising to 
complementary target sequences (genes) – generate fluorescent 
intensity signal (continuous data that after preprocessing can be 
considered approximately normally distributed). 

 RNA-Seq (~2008 onwards): next generation sequencing approach. 
Library of cDNA fragments prepared from RNA and sequenced. 
Generates count data (number of reads mapping to a given gene), 
requiring statistical models suitable for count data (e.g. negative 
binomial model as implemented in edgeR or DESeq)



Key Microarray Manufacturers

Affymetrix (now part of ThermoFisher)

Illumina

• Became main player in next generation sequencing 

• Discontinued expression arrays (rat, mouse, human) 

over past few years but still manufacture genotyping 

arrays

• Continued with array technology and diversified (more species, 

able to deal with FFPE samples, gene 

expression/genotyping/methylation, customised content)

• Chosen as partner for many large-scale efforts including UK 

BioBank



Publications by Technology



Which technology to use?

• Microarrays and RNA-Seq are complementary technologies (despite 
common perception that RNA-Seq superior)

• Choice usually depends how detailed a characterisation of the 
transcriptome is required

• Gene level changes => microarrays sufficient, reliable and cheap. For 
the same cost, can do a higher-powered expt

• Isoform structure, splicing, novel transcripts => RNA-Seq

• Note that exon arrays can also assess splicing

• Both report relative gene expression level estimates, influenced by a 
range of factors and biases inherent to each technology

• Expression estimates not necessarily similar for same sample but 
fold-change concordance between groups of samples reasonably 
high between arrays and RNA-Seq



RNA-Seq Myths and Caveats

• ‘Digital’ or absolute gene counts obtained

• Can detect low expressed genes better than arrays
- Would need prohibitively expensive sequencing depth 

- In typical designs, up to half of all genes are too low expressed to be reliably detected (if 
at all)
- Additional sequencing will still tend to be of highly expressed genes, so lower end hard 
to interrogate

- The issue of low counts is even more problematic for splicing analysis where you may 
be comparing exons or junction-spanning reads

• Larger dynamic range than arrays
- Maybe at high end but not low end, and no noticeable difference in the range of 
expression and fold changes seen in a typical experiment

• Furthermore, have some unique issues - what you sequence in an RNA-Seq
library influences your data for all genes; very inter-dependent in a way that 
arrays are not



Limitations of transcriptomic profiling

• Comprehensive but inherently limited to descriptive results, no matter how 
well experiment performed or data analysed

• Produce large amounts of information; subjective interpretation, and require 
human decision-making to take the information further

• What genes/pathways to focus follow-up experiments on?

• Different researchers could easily identify quite different themes from the 
same results

• Much is left untouched

• Expensive and time-consuming so often published as a stand-alone 
experiment

• However best used as starting point for further work - following up 
hypotheses from gene expression data to uncover mechanistic/causal effects 
can produce elegant studies



Large-scale gene expression projects

• ENCODE

• Allen brain atlas

• Genotype-Tissue Expression Project (GTEx)

• TGCA

• Public repositories 
• Gene Expression Omnibus (GEO) 

http://www.ncbi.nlm.nih.gov/geo/

• Sequence Read Archive (SRA) 

• http://www.ncbi.nlm.nih.gov/sra



Choice of tools

Any sensible pipeline will produce reasonable results

• DON’T worry about getting to a definitive answer (it doesn’t exist 
anyway)

• DO worry about applying chosen tools carefully

• Is it suitable for my question and data I have?

• Have I understood how it works and how the parameter settings and 
options affect its behaviour?

• Have I given the right input and made sure the output is sensible?

• Have I checked my R code for mistakes or unintended behaviour?

It is all too easy to for untoward things to happen 
somewhere along the line, and also surprisingly hard to 

spot them in high dimensional data



RNA-Seq Generates Count Data

• Many genes (typically half) are not sequenced at all

• Raw counts are not comparable across samples (e.g. depth, composition effects)

• Also not comparable between genes for the same sample (e.g. different lengths, 
amplification biases)

ENSG00000069011 211 126 168 157 146 145 168

ENSG00000069018 0 0 1 0 0 0 0

ENSG00000069020 212 359 548 134 195 193 278

ENSG00000069122 0 0 0 0 0 0 1

ENSG00000069188 54 62 73 116 136 103 83

ENSG00000069206 0 0 0 0 0 0 0

ENSG00000069248 731 748 770 632 766 582 678

ENSG00000069275 11847 12391 9959 13182 15600 12974 11946

ENSG00000069329 1586 1591 1473 1551 1801 1435 1740

ENSG00000069345 1051 988 1091 945 1072 876 1067

ENSG00000069399 152 154 279 101 94 97 120

ENSG00000069424 84 68 84 69 81 75 56

ENSG00000069431 95 116 115 86 109 107 94



Methods for RNA-Seq Data

 A variety of packages for processing and analysing RNA-Seq data 
were developed to handle count-based expression data and a myriad 
of sequencing-related effects and biases (longer genes generate 
higher counts, amplification biases related to sequence composition, 
library composition/complexity and so on).

 Tailored methods required for every step including alignment, 
summarising gene/transcript counts, normalisation, testing for 
differential expression and pathway/enrichment analysis

 For differential expression analysis, the dilemma was whether to 
develop novel methods and work directly with the counts, or transform 
the data in a way to meet the assumptions of the existing methods for 
microarray data



BioConductor ‘limma’ package

• limma: Linear models for microarray data

• http://bioconductor.org/packages/release/bioc/html/limma.html

• Originally developed over 15 years ago to handle microarray data (including 
preprocessing and data analysis) and provides a comprehensive framework for 
gene expression data analysis

• Widely used and gold standard in the field, developed by Gordon Smyth and 
colleagues at Walter and Eliza Hall Institute (WEHI), Melbourne, Australia

• Some aspects now obsolete e.g. methods for 2-colour microarrays but has 
evolved with the field of transcriptomics and now able to analyse RNA-Seq data 
with limma, if suitably transformed beforehand

• Introduces some fundamental concepts for analysing gene expression data in R

• Implements standard statistical methods (linear regression) but with additional 
features tailored to gene expression experiments

http://bioconductor.org/packages/release/bioc/html/limma.html


RNA-Seq Analysis Tools

• edgeR

• Analagous steps to limma but uses different statistical models for testing 
for differential expression 

• Computationally efficient and able to analyse complex experimental 
designs 

• Biological variability between samples increases the variance in the counts 
- negative binomial models fitted

• Estimation of biological variability (dispersion) performed empirically 

• Like limma, borrows information across genes to improve estimates from 
small sample sizes

• limma-voom

• Alternative to count-based models is suitably transforming the counts and 
using existing standard statistical approaches

• ‘voom’ function does this so can use limma to analyse RNA-Seq data too!



Experimental design 
considerations



Typical experimental designs

• Disease vs control

• Gene knockdown/knockout vs wildtype

• Effect of treatment/stimulus/drug

• Clinical applications

• Tumour-normal pairs

• Good prognosis vs poor prognosis

• Patient subgroups responding to different treatments

• ‘Gene signature’ to predict who will respond well to a given treatment

• Time course

• Different tissues/stages of development



Replication

• Depends on context – type of sample, effect size, 
heterogeneity within conditions

Cell line Mouse 

model

Human 

samples

Human 

clinical 

samples for 

heterogene

ous disease

n=3         n=5 n=10 n=100



Sequencing Depth

• Number of reads required per sample 
depends on experimental question

• HiSeq4000 – one lane = 250 million reads

• Multiplexing e.g. 10-plex human samples 
gives ~25m reads for each, plenty for 
quantifying gene expression (except for very 
low/unexpressed genes)

• Higher depth required in some situations 
e.g. for splicing analysis, certain library prep 
methods (ribo-depletion)



Potential confounds and covariates

• Gene expression data highly sensitive to many factors
• Lab operator/conditions, day performed, sample collection 

methods, RNA extraction day and so on

• Often influence the data to a far greater extent than any 
experimental effects (!)

• Any step where treated and control samples are handled differently 
could confound the experiment

• If split into batches containing mix of treated/control samples, can 
account for potential effects in analysis

• Also be aware of potential effects from factors unrelated to 
the experiment on the data, which may need to be 
accounted for to optimise analysis



Mouse expt - example of a gene not 
influenced by litter

• Wt and Mut groups

• Three different litters

• Top gene ~ 5x higher 
expression in Wt 
compared to Mut

• Similarly expressed 
across litters in both 
genotypes



Another gene shows strong litter effect

• Within litters, consistent 
pattern of higher 
expression in WT vs Mut

• Within genotypes, 
B>C>A – expression 
influenced by litter group

• Accounting for this 
source of variability 
increases power to 
detect changes of 
interest


