UMIVERSITY OF

¥ ///// i
: Jimin 1
OXFORD i
. I

Oxford

Genomics
CENTRE

RNA-Seq Data Analysis
7th — 8t June 2018

Organised by

Bioinformatics Core at WHG
Helen Lockstone
Santiago Revale
Eshita Sharma
Ben Wright

wellcome centre
human genetics




OXfG er Oxford Genomics Centre
Genomics

CENTRE

~
=
e NS i — —
Y - [ L L TEReBRAW. o wyrresar-enammtae S 1Yo T 8 S et pas &
— R
=] = 3 7
¢ >
S
f»‘q"
= T i - — - 17°%r
| {1 e ) Py
A T N v

Helen Lockstone
Bioinformatics Core Group




Oxford

OVG rVIeW Genomics

CENTRE

« Development of gene expression technology (RNA-Seq
and microarrays) and associated methods/tools

« Experimental design considerations

« Hypothesis testing overview

* Differential expression analysis using R/BioConductor

 Practical session working with a cancer dataset
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A brief history of gene
expression




Transcriptome Profiling

replication
(DNA -> DNA)
DNA Polymerase
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transcription
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Transcriptome can be
measured by microarrays or
RNA-Seq

translation
(RNA -> Protein)
Ribosome

Protein
gwellcome centre
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Widely-used techniques, provide insight
into biological system, albeit a snapshot
— highly dynamic and complex process
(splicing, gene methylation, RNA
stability/degradation, miRNA regulation
etc)
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Two key technologies Gendmics

Microarrays
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Transcriptomics Approaches Gendmics

CENTRE

e Microarray technology (1990s onwards): based on pre-designed
short oligonucleotide sequences, or probes, hybridising to
complementary target sequences (genes) — generate fluorescent
Intensity signal (continuous data that after preprocessing can be
considered approximately normally distributed).

e RNA-Seq (~2008 onwards): next generation sequencing approach.
Library of cDNA fragments prepared from RNA and sequenced.
Generates count data (number of reads mapping to a given gene),
requiring statistical models suitable for count data (e.g. negative
binomial model as implemented in edgeR or DESeq)
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Key Microarray Manufacturers

IHlumina

« Became main player in next generation sequencing

« Discontinued expression arrays (rat, mouse, human)
over past few years but still manufacture genotyping
arrays

HumanHT-12

Affymetrix (now part of ThermoFisher)

« Continued with array technology and diversified (more species,
able to deal with FFPE samples, gene
expression/genotyping/methylation, customised content)

» Chosen as partner for many large-scale efforts including UK
BioBank
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Publications by Technology Gendmics
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Which technology to use? Gendmics

CENTRE

» Microarrays and RNA-Seq are complementary technologies (despite
common perception that RNA-Seq superior)

* Choice usually depends how detailed a characterisation of the
transcriptome is required

» Gene level changes => microarrays sufficient, reliable and cheap. For
the same cost, can do a higher-powered expt

 |soform structure, splicing, novel transcripts => RNA-Seq
* Note that exon arrays can also assess splicing

« Both report relative gene expression level estimates, influenced by a
range of factors and biases inherent to each technology

« EXxpression estimates not necessarily similar for same sample but
fold-change concordance between groups of samples reasonably
high between arrays and RNA-Seq

human genetics

gwellcome centre
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RNA-Seq Myths and Caveats Gendmics

CENTRE

x ‘Digital’ or absolute gene counts obtained

x Can detect low expressed genes better than arrays
- Would need prohibitively expensive sequencing depth

- %n Itl)gpical designs, up to half of all genes are too low expressed to be reliably detected (if
ata

- Additional sequencing will still tend to be of highly expressed genes, so lower end hard
to interrogate

- The issue of low counts is even more problematic for splicing analysis where you may
be comparing exons or junction-spanning reads

¥ Larger dynamic range than arrays

- Maybe at high end but not low end, and no noticeable difference in the range of
expression and fold changes seen in a typical experiment

» Furthermore, have some unique issues - what you sequence in an RNA-Seq
library influences your data for all genes; very inter-dependent in a way that
arrays are not

IVERSITY OF
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Limitations of transcriptomic profiling  Gendmics

CENTRE

Comprehensive but inherently limited to descriptive results, no matter how
well experiment performed or data analysed

» Produce large amounts of information; subjective interpretation, and require
human decision-making to take the information further

* What genes/pathways to focus follow-up experiments on?

 Different researchers could easily identify quite different themes from the
same results

e Much is left untouched

« Expensive and time-consuming so often published as a stand-alone
experiment

« However best used as starting point for further work - following up
hypotheses from gene expression data to uncover mechanistic/causal effects
can produce elegant studies

NIVERSITY OF
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Large-scale gene expression projects Gendmics

CENTRE

- ENCODE 7
* Allen brain atlas ALLEN BRAIN ATLAS /

* Genotype-Tissue Expression Project (GTEX)

« TGCA —Saais

) PUb“C repOS|t0r|eS HE CANCER GENOME ATLA.S?T
« Gene Expression Omnibus (GEO)
http://www.ncbi.nlm.nih.gov/geo/
« Sequence Read Archive (SRA)

* http://www.ncbi.nlm.nih.gov/sra
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Choice of tools Gendmics

CENTRE

Any sensible pipeline will produce reasonable results

« DON’T worry about getting to a definitive answer (it doesn’t exist
anyway)
« DO worry about applying chosen tools carefully
* |s it suitable for my question and data | have?

* Have | understood how it works and how the parameter settings and
options affect its behaviour?

« Have | given the right input and made sure the output is sensible?
« Have | checked my R code for mistakes or unintended behaviour?

It is all too easy to for untoward things to happen
somewhere along the line, and also surprisingly hard to
spot them in high dimensional data
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RNA-Seq Generates Count Data Cenlimice
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ENSG00000069011 211 126 168 157 146 145 168
ENSGO00000069018 0 0 1 0 0 0 0
ENSG00000069020 212 359 548 134 195 193 278
ENSG00000069122 0 0 0 0 0 0 1
ENSG00000069188 54 62 73 116 136 103 83
ENSGO00000069206 0 0 0 0 0 0 0
ENSG00000069248 731 748 770 632 766 582 678
ENSG00000069275 11847 12391 9959 13182 15600 12974 11946
ENSG00000069329 1586 1591 1473 1551 1801 1435 1740
ENSG00000069345 1051 988 1091 945 1072 876 1067
ENSGO00000069399 152 154 279 101 94 97 120
ENSG00000069424 84 68 384 69 81 75 56
ENSG00000069431 95 116 115 86 109 107 94

* Many genes (typically half) are not sequenced at all
* Raw counts are not comparable across samples (e.g. depth, composition effects)

» Also not comparable between genes for the same sample (e.g. different lengths,
amplification biases)

gwellcome centre
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Methods for RNA-Seq Data gxiord

CENTRE

e A variety of packages for processing and analysing RNA-Seq data
were developed to handle count-based expression data and a myriad
of sequencing-related effects and biases (longer genes generate
higher counts, amplification biases related to sequence composition,
library composition/complexity and so on).

e Tailored methods required for every step including alignment,
summarising gene/transcript counts, normalisation, testing for
differential expression and pathway/enrichment analysis

e [For differential expression analysis, the dilemma was whether to
develop novel methods and work directly with the counts, or transform
the data in a way to meet the assumptions of the existing methods for
microarray data
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BioConductor ‘limma’ package e es

CENTRE

limma: Linear models for microarray data
http://bioconductor.org/packages/release/bioc/html/limma.html

Originally developed over 15 years ago to handle microarray data (including
preprocessing and data analysis) and provides a comprehensive framework for
gene expression data analysis

Widely used and gold standard in the field, developed by Gordon Smyth and
colleagues at Walter and Eliza Hall Institute (WEHI), Melbourne, Australia

Some aspects now obsolete e.g. methods for 2-colour microarrays but has
evolved with the field of transcriptomics and now able to analyse RNA-Seq data
with limma, if suitably transformed beforehand

Introduces some fundamental concepts for analysing gene expression data in R

Implements standard statistical methods (linear regression) but with additional
features tailored to gene expression experiments

UNIVERSITY OF
|



http://bioconductor.org/packages/release/bioc/html/limma.html
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RNA-Seqg Analysis Tools Gendmics

CENTRE

* edgeR

« Analagous steps to limma but uses different statistical models for testing
for differential expression

« Computationally efficient and able to analyse complex experimental
designs

» Biological variability between samples increases the variance in the counts
- negative binomial models fitted

« Estimation of biological variability (dispersion) performed empirically

 Like limma, borrows information across genes to improve estimates from
small sample sizes

* [iImma-voom

 Alternative to count-based models is suitably transforming the counts and
using existing standard statistical approaches

« ‘voom’ function does this so can use limma to analyse RNA-Seq data too!

NIVERSITY OF




Experimental design
considerations
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Typical experimental designs e

CENTRE

Disease vs control

Gene knockdown/knockout vs wildtype

Effect of treatment/stimulus/drug

Clinical applications
« Tumour-normal pairs
» Good prognosis vs poor prognosis
« Patient subgroups responding to different treatments
» ‘Gene signature’ to predict who will respond well to a given treatment

Time course

Different tissues/stages of development
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Replication Gendmics
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* Depends on context — type of sample, effect size,
heterogeneity within conditions

Mouse

Cell line
model

n=3 n=5 n=10 n=100
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Seqguencing Depth Cendmics

CENTRE

« Number of reads required per sample
depends on experimental question

* HiSeg4000 — one lane = 250 million reads

« Multiplexing e.g. 10-plex human samples
gives ~25m reads for each, plenty for
guantifying gene expression (except for very
low/unexpressed genes)

« Higher depth required in some situations
e.g. for splicing analysis, certain library prep
methods (ribo-depletion)

G am UNIVERSITY OF

'%‘” 0);4:(0):3))




Oxford

Potential confounds and covariates Coamlrres

CENTRE

« Gene expression data highly sensitive to many factors

» Lab operator/conditions, day performed, sample collection
methods, RNA extraction day and so on

« Often influence the data to a far greater extent than any
experimental effects (!)

« Any step where treated and control samples are handled differently
could confound the experiment

* If split into batches containing mix of treated/control samples, can
account for potential effects in analysis

 Also be aware of potential effects from factors unrelated to
the experiment on the data, which may need to be
accounted for to optimise analysis

G am UNIVERSITY OF
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Wt and Mut groups

Three different litters

Top gene ~ 5x higher
expression in Wt
compared to Mut

Similarly expressed
across litters in both
genotypes
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Another gene shows strong litter effect Gendmics

CENTRE

Gene showing strong litter effect (Rank 9 ProbelD 5240043 WT ws hu) Gene showing strong litter effect (Rank 9 ProbeID S210048)

« Within litters, consistent
— — pattern of higher
| expression in WT vs Mut
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« Within genotypes,
: _ B B>C>A — expression
influenced by litter group
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