Statistical hypothesis testing




ProbesetID

10421269
10419288
10362115
10571840
10415411
10365037
10415413
10565315
10496262
10423505
10466712
10496756
10600205
10415408

logFC
-1.88
-2.28
-1.35
-1.40
-1.04
-1.00
-0.91
-1.27
-1.34
-0.95
-1.51
-1.37
-0.78
-1.05

AveExpr
5.936
7.145
4.304
5.245
4.147
5.395
4.272
4.180
4.880
4.340
4.984
5.499
4.789
3.759

t
-14.82
-10.62

-9.19
-8.67
-7.44
-7.37
-7.18
-6.81
-6.64
-6.34
-6.22
-6.22
-6.15
-6.01

P.Value
3.81E-14
6.37E-11
1.26E-09
3.94E-09
6.96E-08
8.25E-08
1.30E-07
3.25E-07
4.96E-07
1.06E-06
1.44E-06
1.45E-06
1.71E-06
2.43E-06

Results of Differential Expression Analysis

adj.P.Val
1.36E-09
1.13E-06
1.49E-05
3.50E-05
0.000489
0.000489
0.000661
0.001442
0.001961
0.00376

0.004299
0.004299
0.004665
0.005945



Results Columns (limma topTable)

Probeset]D — identifier the probe/probeset/gene

loglFC — fold change (log2 scale) between the two groups in the
comparison performed. Positive values indicate higher expression in the
first defined group, logFC=0 is equal expression in both groups,

negative values indicate lower expression in the first defined group

AveExpr — average expression (normalised data, log2 scale) across all
samples in the experiment

t (moderated t-statistic) — computed test statistic. Large values (positive
or negative) are likely to be significant

P-value — raw p-value indicates significance of observed test statistic
(how likely to have occurred by chance)

Adjusted p-value — significance after correcting for testing many genes
simultaneously (multiple testing)



Testing for differential gene expression

e In simplest case, performs the equivalent of a t-test between two groups
(e.g. disease vs control)

* We can simulate some gene expression data with an R function to
understand the idea of differential expression and significance

sim.data <- function (meanl, sdl, meanZ2?2, sd2?)
{
X <= round(rnorm(10, meanl, sdl),4)
y <- round(rnorm (10, mean2, sd2),4)
t.out <- t.test(x, V)
print (t.out)
p <- round(t.outSp.value, 4)
boxplot (x, y, names=c ("Groupl", "Group2"), ylim=c(0,12))
legend ("topright", 1lty=0, legend=pasteO("P-value=", p), cex-0.8)
print (pastel ("P-value of t-test: ", p))



Simulating differential expression

e Run this function for a few scenarios to get a feel for what
affects the p-value (remember that p<0.05 indicates a
statistically significant difference in means between 2 groups)

par (mfrow=c(2,2)) # to display 4 plots

sim.data(6,1,6,1) # group means equal

sim.data(6,2,6.5,2) # small difference in group
means, relatively high variability

sim.data(6,1,8,1) # large difference in group
means

sim.data(6,0.4, ©6.5,0.4) # small difference in
group means, but also very low variability
within groups
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Examples of simulated data
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Fold changes are only half the story

Simulations 2 and 4 have the same difference in means, but high and low
variance within groups respectively

The effect 1s clear from the boxplots: simulation 4 produces data tightly
clustered around the mean while simulation 2 has much larger spread
and considerable overlap between the groups

Though the estimated fold changes will be similar, the p-values should
be very different (only likely to be significant in the latter)

Ranking on fold change can therefore be misleading

The fold change does not tell you anything about the variability of the
gene, which can dramatically affect whether such a change might occur
by chance or not — for this, p-values are needed



T-test and statistical significance

Standard (2-sample) t-test

— U1— U2
SE(u1— U2)

Standard error is larger with smaller sample sizes and/or larger variance
(increased unreliability in the estimate of the difference of means)

Thus, a large difference between the means (fold change) and a small
assoclated SE will give large values for the t-statistic, and corresponding
small p-values

Rule of thumb: |t| > 2 likely to be significant

Note that the same or similar fold change can have quite different
associated p-values depending on the variability of the gene

The sample variance is used in the calculation of t-statistic, and this can
be a problem when sample sizes are small — often the case for gene
expression studies



Variance and Sample Size

e Simulation exercise to understand the relationship between sample size
and estimated value of variance (see p42-43 of Crawley’s textbook)

e Sample from a normal distribution (mean=10, sd=2) for sample size
between n=3 and n=31, each done 30 times and plot the resulting
variance estimates (var=sd”2 = 4)

e How might we go about writing some R code to do this simulation?

e Let’s think about each step in turn...

Michael ] Crawley: Statistics, An Introduction using R



Variance and Sample Size

e Simulataion exercise to understand the relationship between sample size
and estimated value of variance (see p42-43 of Crawley’s textbook)

e Sample from a normal distribution (mean=10, sd=2) for sample size
between n=3 and n=31, each done 30 times and plot the resulting
variance estimates (var=sd”2 = 4)

e How might we go about writing some R code to do this simulation?

e Let’s think about each step in turn...
> Draw data from specified distribution for each sample size (rnorm)
> Need to do this 30 times per sample size — suggests loop
> Need to compute the variance of each sample drawn

o Plot the results

Michael ] Crawley: Statistics, An Introduction using R 10



Variance and Sample Size

png ("Sample size simulation plot.png")

plot (c(0,32), c(0,15), type="n", xlab="Sample size",
vlab="Variance", main=%“"Sample size simulation")

for(df in seqg(3,31,2)) {
for(i in 1:30) {
X <- rnorm(df, mean=10, sd=2)

points (df, var(x)) 1}}
abline (4,0, col="red")

dev.off ()
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Results of simulation

Sample size simulation
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Gene expression analysis
using R/BioConductor




Limma package (from Bioconductor)

limma: Linear models for microarray data

Originally developed over 15 years ago to handle microarray data (including
preprocessing and data analysis) and provides a comprehensive framework for gene
expression data analysis

Widely used and gold standard in the field, developed by Gordon Smyth and
colleagues at Walter and Eliza Hall Institute (WEHI), Melbourne, Australia

Some aspects now obsolete e.g. methods for 2-colour microarrays but has evolved with
the field of transcriptomics and now able to input RNA-Seq data to limma (more on
this later) if suitably transformed beforehand

Introduces some fundamental concepts for analysing gene expression data in R

Implements standard statistical methods (linear regression) but with additional features
tailored to gene expression experiments
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http://bioconductor.org/packages/release/bioc/html/limma.html

Using limma

Despite extensive and regularly updated documentation (current
userguide is 145 pages!), imma may be difficult to use correctly for
those new to statistical data analysis on large-scale data

Today, we will look at how to set up statistical analyses in R using limma
and understand the details and pitfalls to run reliable gene expression
analysis

Although the approach and some terminology may be new, the basic
idea 1s testing for differences in gene expression between groups, with
assoclated statistical evidence (p-values) for any changes

Limma can handle arbitrarily complex experimental designs but we will
focus mostly on a simple comparison of two groups

15



Linear model approach

e Tests whether the slope of the regression line is significantly different
from zero (equivalent to a t-test in fact)

e Explanatory variable often categorical (disease vs control, treatment vs
control, mutant vs wildtype etc)

Means equal 2-fold up-regulation 4-fold down-regulation
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 Slope of the regression line 1s equal to the difference in means of the
two groups (if model has intercept term)

e The number of samples and variability in the data determines the
confidence in the coefficient estimate (standard error) 16



Testing for differential expression

e The difference between 2 groups can be estimated directly if an
intercept term is included in the model (estimates mean expression in
control or reference group). The slope of the regression line indicates
the difference between this group and a second group:

o 1f they are similarly expressed, the line will be almost flat and the regression
coetficient close to zero

o 1f a gene 1s up-regulated in the second group, the coefficient will be positive (and
quite large) — adding this amount to mean baseline expression gives the mean
expression in the second group

o Similarly, if a gene is down-regulated in the second group, the coefficient will be
large and negative (essentially need to subtract from the baseline level to get the
mean expression of the second group)

e Again, the number of samples in each group and the variability
determine the significance of the difference

e Ranking on p-value, rather than logFFC, identifies the most reliable
results 17



Using limma effectively

Functions in limma perform all the statistical calculations behind the
scenes

A linear model is fitted to each gene separately, but even analysing
>20,000 genes is done very quickly — highlights the efficiency of R for
these kind of applications

Rather than the underlying statistical analysis, the user needs to focus on
making sure the input to limma functions 1s correct, and especially that
the experimental design 1s correctly defined

Including relevant explanatory variables enables limma to detect
differentially expressed genes with greater power

° e.g. batch, litter or other similar effects may explain some variability in the
data, which limma can account for

> Age, gender and other demographic or clinical phenotype data can also be
included in the model (so long as not confounded with experimental groups)
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eBayes to improve variance estimation

e Empirical method to make more robust inferences of
variance for individual genes by ‘borrowing’ information
ACrOss genes

* Shrinks the variance estimates towards a common value
> High variance genes get their estimates squeezed down a bit

° Low variance genes get their estimates squeezed up towards the
typical variance seen for genes of similar mean expression

* Reduces the probability of calling small fold changes
significant 1f the sample variance grossly under-estimates the
true variance (likely for some, maybe many, genes among
20,000 given the typically small sample sizes of
transcriptomics studies)
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Sample limma code for simple experiment

e Input — normalised expression data (log2 scale)

library (limma)

eset <- read.table("Normalised expression data.txt",
sep="\t”, header=T, row.names=1)

Group <- factor(c("wT", "WT", "Mu", "Mu", "Mu"))
design <- model.matrix (~Group)

colnames (design) <- c("WT", "MUvsWT")

fit <- 1ImFit (eset, design)

fit <- eBayes(fit)

topTable (f1t, coef="MUvsWT", adjust="BH")

e Output —list of genes ranked by evidence for differential expression

20



Limma — analysis made simple (if used correctly)

e This shows that running differential expression analysis for
simple experiments is not too difficult and we will run some
analysis later on a dataset with 3 different cancer types

e But is also deceptively simple and it’s important to understand
what each step 1s doing — there are many ways to get it wrong
and only a couple of ways to get it right (we’ll see alternative
models that output the same results in a minute).

e Also important to know how to check that limma has done
what you want it to do.
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