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Results of Differential Expression Analysis
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ProbesetID logFC AveExpr t P.Value adj.P.Val

10421269 -1.88 5.936 -14.82 3.81E-14 1.36E-09

10419288 -2.28 7.145 -10.62 6.37E-11 1.13E-06

10362115 -1.35 4.304 -9.19 1.26E-09 1.49E-05

10571840 -1.40 5.245 -8.67 3.94E-09 3.50E-05

10415411 -1.04 4.147 -7.44 6.96E-08 0.000489

10365037 -1.00 5.395 -7.37 8.25E-08 0.000489

10415413 -0.91 4.272 -7.18 1.30E-07 0.000661

10565315 -1.27 4.180 -6.81 3.25E-07 0.001442

10496262 -1.34 4.880 -6.64 4.96E-07 0.001961

10423505 -0.95 4.340 -6.34 1.06E-06 0.00376

10466712 -1.51 4.984 -6.22 1.44E-06 0.004299

10496756 -1.37 5.499 -6.22 1.45E-06 0.004299

10600205 -0.78 4.789 -6.15 1.71E-06 0.004665

10415408 -1.05 3.759 -6.01 2.43E-06 0.005945



Results Columns (limma topTable)

 ProbesetID – identifier the probe/probeset/gene

 logFC – fold change (log2 scale) between the two groups in the 

comparison performed. Positive values indicate higher expression in the 

first defined group, logFC=0 is equal expression in both groups, 

negative values indicate lower expression in the first defined group

 AveExpr – average expression (normalised data, log2 scale) across all 

samples in the experiment

 t (moderated t-statistic) – computed test statistic. Large values (positive 

or negative) are likely to be significant

 P-value – raw p-value indicates significance of  observed test statistic 

(how likely to have occurred by chance)

 Adjusted p-value – significance after correcting for testing many genes 

simultaneously (multiple testing)
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Testing for differential gene expression

 In simplest case, performs the equivalent of  a t-test between two groups 

(e.g. disease vs control)

 We can simulate some gene expression data with an R function to 

understand the idea of  differential expression and significance
sim.data <- function(mean1, sd1, mean2, sd2)

{

x <- round(rnorm(10, mean1, sd1),4)

y <- round(rnorm(10, mean2, sd2),4)

t.out <- t.test(x, y)

print(t.out)

p <- round(t.out$p.value, 4)

boxplot(x, y, names=c("Group1", "Group2"), ylim=c(0,12))

legend("topright", lty=0, legend=paste0("P-value=", p), cex-0.8)

print(paste0("P-value of t-test: ", p))

}
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Simulating differential expression

 Run this function for a few scenarios to get a feel for what 

affects the p-value (remember that p<0.05 indicates a 

statistically significant difference in means between 2 groups)

par(mfrow=c(2,2)) # to display 4 plots 

sim.data(6,1,6,1) # group means equal

sim.data(6,2,6.5,2) # small difference in group 

means, relatively high variability

sim.data(6,1,8,1) # large difference in group 

means

sim.data(6,0.4, 6.5,0.4) # small difference in 

group means, but also very low variability 

within groups
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Examples of simulated data
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Fold changes are only half the story

 Simulations 2 and 4 have the same difference in means, but high and low 

variance within groups respectively 

 The effect is clear from the boxplots: simulation 4 produces data tightly 

clustered around the mean while simulation 2 has much larger spread 

and considerable overlap between the groups

 Though the estimated fold changes will be similar, the p-values should 

be very different (only likely to be significant in the latter)

 Ranking on fold change can therefore be misleading

 The fold change does not tell you anything about the variability of  the 

gene, which can dramatically affect whether such a change might occur 

by chance or not – for this, p-values are needed
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T-test and statistical significance 

 Standard (2-sample) t-test

 t = 
𝜇1− 𝜇2

𝑆𝐸(𝜇1− 𝜇2)

 Standard error is larger with smaller sample sizes and/or larger variance 

(increased unreliability in the estimate of  the difference of  means)

 Thus, a large difference between the means (fold change) and a small 

associated SE will give large values for the t-statistic, and corresponding 

small p-values

 Rule of  thumb: |t| > 2 likely to be significant

 Note that the same or similar fold change can have quite different 

associated p-values depending on the variability of  the gene

 The sample variance is used in the calculation of  t-statistic, and this can 

be a problem when sample sizes are small – often the case for gene 

expression studies
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Variance and Sample Size

 Simulation exercise to understand the relationship between sample size 

and estimated value of  variance (see p42-43 of  Crawley’s textbook)

 Sample from a normal distribution (mean=10, sd=2) for sample size 

between n=3 and n=31, each done 30 times and plot the resulting 

variance estimates (var=sd^2 = 4)

 How might we go about writing some R code to do this simulation?

 Let’s think about each step in turn…

Michael J Crawley: Statistics, An Introduction using R
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Variance and Sample Size

 Simulataion exercise to understand the relationship between sample size 

and estimated value of  variance (see p42-43 of  Crawley’s textbook)

 Sample from a normal distribution (mean=10, sd=2) for sample size 

between n=3 and n=31, each done 30 times and plot the resulting 

variance estimates (var=sd^2 = 4)

 How might we go about writing some R code to do this simulation?

 Let’s think about each step in turn…

◦ Draw data from specified distribution for each sample size (rnorm)

◦ Need to do this 30 times per sample size – suggests loop

◦ Need to compute the variance of  each sample drawn

◦ Plot the results

Michael J Crawley: Statistics, An Introduction using R
10



Variance and Sample Size

png("Sample_size_simulation_plot.png")

plot(c(0,32), c(0,15), type="n", xlab="Sample size", 

ylab="Variance", main=“Sample size simulation")

for(df in seq(3,31,2)){

for(i in 1:30){

x <- rnorm(df, mean=10, sd=2)

points(df, var(x)) }}

abline(4,0, col="red")

dev.off()
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Results of simulation
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Gene expression analysis 
using R/BioConductor



Limma package (from Bioconductor)
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 limma: Linear models for microarray data

 http://bioconductor.org/packages/release/bioc/html/limma.html

 Originally developed over 15 years ago to handle microarray data (including 

preprocessing and data analysis) and provides a comprehensive framework for gene 

expression data analysis

 Widely used and gold standard in the field, developed by Gordon Smyth and 

colleagues at Walter and Eliza Hall Institute (WEHI), Melbourne, Australia

 Some aspects now obsolete e.g. methods for 2-colour microarrays but has evolved with 

the field of  transcriptomics and now able to input RNA-Seq data to limma (more on 

this later) if  suitably transformed beforehand

 Introduces some fundamental concepts for analysing gene expression data in R

 Implements standard statistical methods (linear regression) but with additional features 

tailored to gene expression experiments

http://bioconductor.org/packages/release/bioc/html/limma.html


Using limma

 Despite extensive and regularly updated documentation (current 

userguide is 145 pages!), limma may be difficult to use correctly for 

those new to statistical data analysis on large-scale data

 Today, we will look at how to set up statistical analyses in R using limma

and understand the details and pitfalls to run reliable gene expression 

analysis

 Although the approach and some terminology may be new, the basic 

idea is testing for differences in gene expression between groups, with 

associated statistical evidence (p-values) for any changes

 Limma can handle arbitrarily complex experimental designs but we will 

focus mostly on a simple comparison of  two groups
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Linear model approach

 Tests whether the slope of  the regression line is significantly different 

from zero (equivalent to a t-test in fact)

 Explanatory variable often categorical (disease vs control, treatment vs 

control, mutant vs wildtype etc)

 Slope of  the regression line is equal to the difference in means of  the 

two groups (if  model has intercept term)

 The number of  samples and variability in the data determines the 

confidence in the coefficient estimate (standard error) 16



Testing for differential expression

 The difference between 2 groups can be estimated directly if  an 

intercept term is included in the model (estimates mean expression in 

control or reference group). The slope of  the regression line indicates 

the difference between this group and a second group: 

◦ if  they are similarly expressed, the line will be almost flat and the regression 

coefficient close to zero

◦ if  a gene is up-regulated in the second group, the coefficient will be positive (and 

quite large) – adding this amount to mean baseline expression gives the mean 

expression in the second group

◦ Similarly, if  a gene is down-regulated in the second group, the coefficient will be 

large and negative (essentially need to subtract from the baseline level to get the 

mean expression of  the second group)

 Again, the number of  samples in each group and the variability 

determine the significance of  the difference

 Ranking on p-value, rather than logFC, identifies the most reliable 

results 17



Using limma effectively

 Functions in limma perform all the statistical calculations behind the 

scenes

 A linear model is fitted to each gene separately, but even analysing 

>20,000 genes is done very quickly – highlights the efficiency of  R for 

these kind of  applications

 Rather than the underlying statistical analysis, the user needs to focus on 

making sure the input to limma functions is correct, and especially that 

the experimental design is correctly defined  

 Including relevant explanatory variables enables limma to detect 

differentially expressed genes with greater power

◦ e.g. batch, litter or other similar effects may explain some variability in the 

data, which limma can account for 

◦ Age, gender and other demographic or clinical phenotype data can also be 

included in the model (so long as not confounded with experimental groups)
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eBayes to improve variance estimation

 Empirical method to make more robust inferences of  

variance for individual genes by ‘borrowing’ information 

across genes

 Shrinks the variance estimates towards a common value

◦ High variance genes get their estimates squeezed down a bit

◦ Low variance genes get their estimates squeezed up towards the 

typical variance seen for genes of  similar mean expression

 Reduces the probability of  calling small fold changes 

significant if  the sample variance grossly under-estimates the 

true variance (likely for some, maybe many, genes among 

20,000 given the typically small sample sizes of  

transcriptomics studies)
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Sample limma code for simple experiment

 Input – normalised expression data (log2 scale)

library(limma)

eset <- read.table("Normalised_expression_data.txt", 

sep=“\t”, header=T, row.names=1)

Group <- factor(c("WT", "WT", "Mu", "Mu", "Mu"))

design <- model.matrix(~Group)

colnames(design) <- c("WT", "MUvsWT")

fit <- lmFit(eset, design)

fit <- eBayes(fit)

topTable(fit, coef="MUvsWT", adjust="BH")

 Output –list of  genes ranked by evidence for differential expression
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Limma – analysis made simple (if used correctly)

 This shows that running differential expression analysis for 

simple experiments is not too difficult and we will run some 

analysis later on a dataset with 3 different cancer types 

 But is also deceptively simple and it’s important to understand 

what each step is doing – there are many ways to get it wrong 

and only a couple of  ways to get it right (we’ll see alternative 

models that output the same results in a minute).

 Also important to know how to check that limma has done 

what you want it to do.
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