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Practical Tutorial 

Earlier we introduced the R software environment, some key features of the R programming language 
and how to start using it. We will now do some practical exercises working with example data to 
perform typical tasks. First, some important acknowledgements: 

The tutorial that follows is in part adapted from the Software Carpentry Foundation 
(https://software-carpentry.org/lessons/) Programming with R, specifically the Analysing 
Patient Data tutorial: 
http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-data/index.html 

The Software Caprentry material is available for re-use under a Creative Commons License and 
I am grateful to the original authors. https://creativecommons.org/licenses/by/4.0/ 

 
This document and a variety of extensions to the tutorial material were written and developed 
by Helen Lockstone, with contributions from Ben Wright. 

All the material for today’s course is available from this link: 

https://www.well.ox.ac.uk/bioinformatics/training/R_Basic_Features_311019/ 

You can open a copy of this tutorial guide on the machine you are using to copy and paste any 
particularly long commands. Generally, manually type in the shorter commands to get used to the R 
environment and structure of commands – most are very short. They are shown in red Courier font 
text throughout this document. 

If you see an error message at any point, first check the command matches that in the tutorial exactly 
and that you haven’t accidentally missed an earlier command out. Pay particular attention to 
lower/upper case letters, underscores, dashes or dots in function or object names, and that brackets 
and quotes are correctly paired. If you can’t spot the problem or have a question, please don’t hesitate 
to ask.  

 

Setup 

An important concept before we get started is the working directory - this is where R will by default look 
for files to read in and where any output you write to a file will be saved.  

If you are working on a personal laptop, create a folder for today’s course (you can name it 
‘R_workshop’ or whatever you wish) somewhere in your file directory. 

If you are working on one of the desktops provided, the necessary files for this session are located in 
H:/R_basic_features_course 

 

https://software-carpentry.org/lessons/
http://swcarpentry.github.io/r-novice-inflammation/01-starting-with-data/index.html
https://creativecommons.org/licenses/by/4.0/
https://www.well.ox.ac.uk/bioinformatics/training/R_Basic_Features_311019/


 

We now need to set this as the working directory, which can be most easily done via the Session 
menu in RStudio. From the Session menu, select ‘Set working directory’, and then ‘Choose 
directory…’ 

 

Navigate to the relevant directory and select OK to set it as the working directory. Note that this will 

automatically execute an R command in the console setwd(path_to_directory) 

If you are working on a laptop, you will also need to download some files by entering the following 
commands: 

download.file("https://www.well.ox.ac.uk/bioinformatics/training/R_material

s/inflammation_data.csv", "./inflammation_data.csv") 

 

download.file("https://www.well.ox.ac.uk/bioinformatics/training/R_material

s/sample.csv", "./sample.csv") 

 
 

Enter your commands from now on in the top-left panel of RStudio (a text editor) as this means they 
can be saved to keep a record of what you have done. To run a command written in this panel, make 
sure the cursor is located somewhere in the line of code and click the Run icon with the green arrow. 
The command is automatically copied into the lower console panel and executed by R.  

 

  To save your work, click on the disk icon in the same bar as the ‘run’ button. Giving a filename with 
a .R extension, such as ‘R_course_code.R’ saves it as an R script file - this can be opened like a text 
file but the .R extension is useful to identify files that contain scripts.  

 

This is the usually the easiest way to work; if you need to close your session and return to it another 
time, it is easy to run the code again. If it were appropriate, all of the code stored in a script can be 

executed in R from start to finish with the command source("script_name.R") 

 

Helpful Tips 

The # symbol is the comment character in R– lines in a script starting with a # (or more commonly ##) 
can include comments about what the code is doing. It is strongly recommended to comment your 
code as much as possible because it will help others understand what it is doing, including yourself if 
you revisit it sometime after originally working on it.  A # can also be used after a command to note any 
result or information relating to that command – everything after the # will be ignored by R but serve as 
useful information to the programmer. You can also use long lines of # symbols to break your code into 
sections. 

In the console panel, you can use the up/down arrow keys to scroll through previous commands to re-
run or edit them easily if needed. RStudio also has features to help auto-complete names of functions 
and objects, and pairing brackets and quotes. 

 

 

 



  

   

Reading in data from a file 

The first thing we need to do is load or read in the data from our files so it is accessible in the current R 

session. There are a few possible ways to do this but we will use the function read.csv because our 

files are saved in ‘comma-separated values’ or csv format. To find out details of how to use this 
function you can search RStudio’s Help menu (bottom right panel) or type:  

help(read.csv) 

The help page shows us the arguments for this function and their default values where applicable. For 
example, we see sep=”,”, which means the fields in a row will be separated on commas, and 
header=TRUE, which means it is expecting the first row of the file to contain names for each column.  

The first file we will work with is the one named ‘inflammation_data.csv’. If we inspect this file in Excel 
or a text editor (by opening it directly from its location on your computer) we see there are no column 
names, just a large set of numerical values.  

Therefore, we need to explicitly include the header argument in our command, changing it to FALSE to 
over-ride the default behaviour of the function. This is an example of how arguments modify a 
function’s precise behaviour, rather than requiring two separate functions to exist for files with/without 
header rows.  

inf.data <- read.csv("inflammation_data.csv", header=FALSE) 

 

  Note: if you see an error message similar to ‘No such file or directory’ when trying to read in a file, it 
is likely that either (i) the file is not located in the current working directory (use getwd() to check the 
current working directory in your R session); (ii) there is one (or more) typos in the filename. 

 

It is worth breaking this command apart to refresh on some of the terminology used this morning, as it 
can be hard at first to differentiate object names (decided by us) from R functions (pre-defined in the 
language).  

We have given a name for a new object – inf.data – in which to store the contents of the file 
‘inflammation_data.csv’. Our object name is descriptive without being too long (shortening 

‘inflammation’ to ‘inf’ for our convenience). We are using the in-built R function read.csv, and provide 

two arguments: 

 the name of the file to read in 

 header=FALSE, indicating to R that our file does not have a header row 

There are many other arguments to the read.csv function to further refine its behaviour but these are 
either optional or the default settings are fine for most situations.  

By running this command, R creates the object ‘inf.data’ and information about it appears in the top-
right panel of RStudio. It is detailed as 60 obs. (observations) of 40 variables and if you hover the 
mouse pointer over the name, inf.data, it indicates the object is a data frame. Finally by clicking the 
spreadsheet icon to the righthand side, the contents of the object are loaded in the top-left panel in a 
new window, titled by the name of object.  

This shows we have successfully loaded the data. The columns have been automatically named by R 
as V1 through to V40, as column names have to start with a letter. The rows are simply numbered - 
the only restriction to row names is that they must be unique.  

 

 



 

What do you think will happen if you run the command above without including the header argument? 
Try it by saving the contents into a new object and compare to inf.data: 

test <- read.csv("inflammation_data.csv")  

Note another object named ‘test’ now appears. We can use the head command to inspect the first 6 

rows of each object. For display purposes, we’ll also only include the first 6 columns: 

head(test [, 1:6]) 

head(inf.data[ , 1:6]) 

Discuss with a neighbour what you observe. 

 

  This is a good example of how easily something unwanted can happen in R and the importance of 
checking your objects contain what you intend them to. Any mistakes can simply be corrected by re-
running the command e.g. with the appropriate header argument, and overwriting any previous version 
of the object. 

 
 

 

Two-dimensional data structures 

Our original file contained rows and columns of data, and R has suitable 2-dimensional data structures 
to store such data: matrices and dataframes. These can both be thought of as tables of data, 
analogous to an Excel spreadsheet. Matrices require all columns to be of the same type, while data 
frames can have columns of different data types. Given that experimental data is often a mixture of 
numeric values (e.g. measurements) and associated descriptive information, data frames are a very 
commonly used data structure in R.  
 
 
 While it is possible to hold mixed data types in a matrix object as well, R will use its internal 
hierarchy of data types to choose one that is applicable to all columns – often this means numerical 
columns get converted to character strings, and certain functions may not perform as expected if this 
is not noticed, or produce an error message.   
 
 
In this case, a data frame object has been created: 
class(inf.data) 

[1] "data.frame" 
 
We can check how each column of data has been treated by R e.g. for the first column: 
class(inf.data[,1]) 

[1] "integer" 
 
 
  In fact as all the columns contain data of the same type, R could equally well store this data as a 

matrix object. A data frame has been created because the functions read.csv and read.table are 

specifically designed to deal with mixed column classes and produce data frames by default. Another 

function scan can be used to read in matrices, especially large ones. 

 
 
 
 
 



  

   

It is worth noting that some functions operate on matrix objects, and so converting between classes is 
sometimes needed.  
inf.data <- as.matrix(inf.data) 

class(inf.data) 

 
We will continue with the matrix form of this object for now, and load a mixed dataset later. Most 
operations on either kind of 2-dimensional object are the same. For example, we can find the 

dimensions of a matrix or a data frame with the dim function. 

 
dim(inf.data) 

[1] 60 40 
 

The output of dim is printed to the screen and shows the number of rows the object contains, followed 

by the number of columns (the convention is always rows, then columns but this can be hard to 
remember at first as there is no indication).  
 

If unsure, the functions nrow and ncol will return the number of rows or columns respectively; these 

take as their argument the name of the object: 
nrow(inf.data) 

ncol(inf.data) 

  

This particular file suffers from the lack of any labels to annotate what data is recorded in the rows and 
columns. The Software Carpentry tutorial provides the following information: 
“We are studying inflammation in patients who have been given a new treatment for arthritis. Each row 
holds the observations for just one patient. Each column holds the inflammation measured in a day, so 
we have a set of values in successive days.” 
 
Our object has 60 rows and 40 columns, so we infer from the information above that there are 60 
patients, and 40 days.  
 
But again we see a way for mistakes to easily creep into data analysis – here we have to rely on 
information given to us second-hand to know what is what. What if that information were wrong? Are 
there any checks we can make ourselves to be sure patients are in rows? We are not told how many 
patients were included so simply checking the number of rows won’t help. And what if there were 50 
patients and measurements taken over 50 days? 

 
Even with careful scrutiny it would be hard to know how the data are presented (patients in rows or 
columns) from the data alone. We could perhaps make some plots to help us, or we might spot the 
zero values in the first column. Scrolling down the object display in the top-left panel or displaying the 
first column in the console confirms they are all zeroes, and the values in each row tend to rise across 
the first few columns. We may be reassured by this that the patients are indeed in the rows, since we 
might expect inflammation to rise over time, and an individual recording 0 on every single day might 
be unlikely (though not impossible).  
 
It would be prudent to add some row and column names to reduce the chance of making a mistake 
later when dealing with this data: 

rownames(inf.data) <- paste("Patient", 1:60, sep="_") 

colnames(inf.data) <-  paste("Day", 1:40, sep="_") 

 
This introduces the very useful and versatile function paste. Note that adding row and column names 

does not change the size of the data object, but we can see them displayed by reloading the object. 
They are similar to the alphabetical columns and numbered rows in an Excel spreadsheet. 

 

 

 

 



 

Accessing Data 

Earlier we looked at accessing elements of a one-dimensional vector object. For matrices and 
dataframes, a similar approach with square brackets is used: 
 
object_name[rows,  cols] 
 
By specifying the rows and columns of interest, an object can be subset in a variety of ways to inspect 
or extract different parts of it.  

 
inf.data[1,1] # this pulls out the data value in the first row of the 
first column 
 
inf.data[30, 20] # any single entry can be extracted by specifying the row 

and column 

 

How might you select the data in the first 5 rows for the first 5 columns? Add your command for this 
below. 
 
 
 
 
 

If we need to select non-contiguous portions of the object, we’ll need the help of the c() function: 
inf.data[c(1, 3, 5), c(10, 20)] 

 

If you want to display all columns for selected row(s), leave blank space after the comma: 
 

inf.data[5, ] # All columns for row 5 

 

Or blank space before the comma to select all rows for given column(s): 
inf.data[ , 1:5] # all rows, columns 1 through 5 

 
 
We added column names to our object earlier, and columns can also be accessed by name (in 
quotes): 
inf.data["Patient_1", ] 

Suppose you want to determine the maximum inflammation for patient 5 across days three to seven. 
To do this you would extract the relevant subset from the data frame and calculate the maximum 
value. Which of the following lines of R code gives the correct answer? 

1. max(dat[5, ]) 

2. max(dat[3:7, 5]) 

3. max(dat[5, 3:7]) 

4. max(dat[5, 3, 7]) 

 

 

 

 

 

 

 

 

 



  

   

Analysing Data 

We can perform many simple analyses of the data by applying functions such as max, min, mean, or 
summary to our data object. We might want to determine the maximum value per patient or the 
average value per day. The following examples illustrate how this can be done extremely efficiently in 
R, starting with an approach that is the opposite (and most definitely not recommended!). 

Suppose we want to find the maximum inflammation score for each patient across the 40 days of 
measurements.  Let’s start by calculating it for patient 1: 

Extracting the data for patient 1 (i.e. the first row) is the first obvious step, and perhaps we decide it 
makes sense to store the values for this patient in a new object: 
inf.patient1 <- inf.data[1, ]  

We can then calculate the maximum value for Patient 1’s data: 
max(inf.patient1) 

[1] 18 

 

Although this seems reasonable enough, there are several issues: 

 we’ve created an additional object to store data that is simply a duplicate of what is already 
contained in our original object 

 it doesn’t scale well to do this for all 60 patients 

 the result is output to the console and therefore hard to do anything further with 

If we did continue with this approach, there would be 60 new objects (all with very similar names), a 
high probability of having made a typing mistake somewhere (perhaps overwriting one patient’s data 
with another), and a large set of results that we’d have to manually write down or transfer to an Excel 
spreadsheet; all of which is very messy and prone to error.  

 
We can easily dispense with the intermediate step of creating a new object: 
# max inflammation for patient 1 

max(inf.data[1, ]) 

[1] 18 
# or equivalently 

max(inf.data["Patient_1", ]) 

[1] 18 
 

These commands are the same as extracting the data for patient 1 as we did earlier, but instead of 
printing to the screen or storing in a new object, the command is used directly as an argument to the 
function max – by enclosing in the ().  
 
 
 Commands can be nested in this way to achieve multiple steps in a single line of code; too many 
commands in one line though can make it harder to work out what the code is doing, as well as 
increase the chance of the code not doing as intended – the location of brackets becomes vital.   
 

 

 
 
 
 
 
 



 

We’d really like a way to this for all 60 patients without duplicating the code 60 times. Loops are one 

option (not discussed here) but the apply function is the most efficient approach: 

 

apply allows us to repeat a function on all of the rows (MARGIN = 1) or columns (MARGIN = 2) of a 

data frame.  
max_inf_patient <- apply(inf.data, MARGIN=1, max) 

 

Similarly, we could compute the average inflammation per day with a single line of code: 
avg_inf_day <- apply(inf.data, MARGIN=2, mean) 

 

Comparing these two commands will help understand the apply function (which is not intuitive but 

highly efficient as we have seen).  The arguments to apply are: 

 the data object 

 MARGIN, indicating whether to apply over rows (1) or columns (2) 

 the name of (another) function to be applied 
 

We wanted to find the maximum inflammation score for each patient, so we looked across the rows 

and used the max function. To modify the command to find the average inflammation per day, we 

switched the MARGIN argument to 2 for columns, and gave the final argument as mean.  

 
 
 While the MARGIN argument is explicitly assigned above, R is equally happy to infer from the 

shortened command apply(inf.data, 1, max) that the 1 should be assigned to the second 

defined argument of apply. You can also write your own bespoke functions as required and use 

apply to run them over an object.  

 
 
We have also solved the final issue with our initial approach by storing the results in suitably-named 
objects for further work.  
length(max_inf_patient)  

head(max_inf_patient) 

 

Another useful function is summary. This returns the minimum value, first quartile, median, mean, third 

quartile and the maximum value, all very useful information to make an initial inspection of your data. 
summary(inf.data[, 1:4]) # for each of the first 4 days 

 

 

 

Plotting Data 

Visualising data is a vital part of statistical analysis, and R’s plotting capabilities are a key reason for 
its popularity. There is a related course R: Visualisation that you can take if interested to learn more. 
Here, we introduce ways to make a few simple plots.  

Let’s take a look at the average inflammation over time. Recall that we already calculated these values 

above and saved them in avg_inf_day. Plotting the values is done with the function plot: 
plot(avg_inf_day) 

 

Default labels and settings are used but we can refine our plot with some additional arguments: 
 

plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", 

ylab="Average_inflammation_score") # adding title and axis labels 

 

plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", 

ylab="Average_inflammation_score", pch=4, col="red") # changing the 

plotting symbols and colour 

 

 

 



  

   

 
Similarly, we could plot the data per patient: 
plot(max_inf_patient) 

 

Here, we might decide to use a boxplot instead: 
boxplot(max_inf_patient, main="Maximum Inflammation Scores", 

ylab="Max_inf_score") 

legend("topright", legend="n=60 patients", cex=0.8) # adding and legend 

 

 
When we are happy with our plots, they can be saved to a file.  
pdf("Inflammation_plots.pdf", onefile=T) 

plot(avg_inf_day, main="Inflammation Scores Over Time", xlab="Day", 

ylab="Average_inflammation_score", pch=4, col="red") 

boxplot(max_inf_patient, main="Maximum Inflammation Scores", 

ylab="Max_inf_score") 

legend("topright", legend="n=60 patients", cex=0.8) 

dev.off() 

 

 
This will be saved to the current working directory by default so if we check the folder, a new file 
named ‘Inflammation_plots.pdf’ should have been created. The onefile=T argument instructs R to 

append additional plots to the same file and the dev.off() command at the end closes the file 

connection. You can also export plots directly to a pdf file from the RStudio plot panel. 
 
 

 

Data Handling 
 
We’ll next read in data from another file to illustrate a few more features of data frames and how to 
work with them in R. In this case the file does contain a header row and the default arguments for 

read.csv are appropriate for this file so we only need provide the filename: 

 

data2 <- read.csv("sample.csv") 
head(data2) 

 
This displays the first 6 rows, and we can see immediately that we have a range of different types of 
data in each column. Let’s see how R has treated it (you can paste the following 4 lines as one block).  
 

for(i in 1:ncol(data2)) 

{ 

 print(class(data2[,i])) 

} 

 

Here, we’ve used a for loop to iterate over each column in the object data2, and print to screen the 

class of each column. The output tells us that columns 1:3 are treated as factors, column 5 as numeric 
and the remaining columns as integer values. We haven’t yet mentioned factors and will only briefly 
discuss them here but they are very important for statistical analysis in R. They are one-dimensional, 
like vectors, and are particularly useful for categorical data. 
 

length(data2$Group) 

 
[1] 100 
 
 

 

 

 

 



 

 

data2$Group 

 
Each of the 100 entries in the Group column are printed to the screen, and at the end is the additional 
information: 
Levels: Control Treatment1 Treatment2 

 
These are the unique set of entries in this column, known as the levels of the factor. You may have 
come across factors before in the context of experimental design or ANOVA - in this case the 
experiment might test the effect of 2 treatments (Treatment1 and Treatment2) on blood pressure, 
perhaps to see if it reduces compared to a control group. Other information about the patients, such as 
their age and gender may be useful to include in the analysis, especially if they are not matched 
across the treatment groups.  
 
 

R will treat any columns containing character strings (text) as a factor by default with read.csv or 

read.table. We don’t always want to do this though, and indeed it is usually preferable to switch 

this behaviour off, and specifically convert data we do want to treat as factors later. This is because 
factors store data differently and so can sometimes behave differently to vectors. For example, here 
the first column of IDs would preferably be a character vector, as could Gender unless we needed to 
include it as an additional explanatory factor in our analysis model.  
 
The way to switch off this default behaviour is with the argument ‘stringsAsFactors’ – if you  check the 
help page for read.csv again, you’ll see it listed among the arguments, and it is TRUE by default 
(although it’s not readily apparent that this is the case).  
 

data2 <- read.csv("sample.csv", stringsAsFactors=FALSE) 

 
Repeating our loop to check the class of each column, we now see that the first 3 columns are 
character vectors rather than factors 
 

for(i in 1:ncol(data2)) 

{ 

 print(class(data2[,i])) 

} 

 
We can specifically convert the Group column to a factor: 
 

data2$Group <- as.factor(data2$Group) 

class(data2$Group) 

[1] "factor" 
 
A very useful summary function is table: 
 

table(data2$Group) 

Control Treatment1 Treatment2  
        30         35         35  
 
table(data2$Gender) 

f      F    m     M  
35   4    46   15  
 
This alerts us to the fact that data in the Gender column has not been entered consistently, which we 
might have already spotted from viewing the object in RStudio.  
 
 
 
 
 
 



  

   

To fix this, we can make sure F and M are used throughout; this involves determining which rows 
contain a small f for example, and substituting with F. 

rows.f <- which(data2$Gender == "f") # rows.f stores the numeric indices of 
rows where Gender column contains an ‘f’ 

data2$Gender[rows.f] <-  "F" # replacing these elements with ‘F’ 

 
We can do this all in one step if we wish for the male samples, which saves creating a temporary 
object but makes it harder to see what the code is doing: 

data2$Gender[which(data2$Gender == "m")] <- "M" 

 
Finally we can check we have modified the data as intended: 
table(data2$Gender) 

F      M  
39    61  
 
This last section is just a brief foray into data handling and manipulation in R, which enables all          
manner of formatting, editing, updating or data cleaning tasks to be performed. These are frequently  
required before embarking on some analysis, and often take longer too! It is the topic of the next  
course in the series, R: Data Handling - please sign up if interested. 
 
Well, we have reached the end of today’s course – I hope it was useful for you and good luck on your 
R journey! Please see below for further reading. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Further Resources and Useful Information 

We have recently helped collate a comprehensive set of R resources with IT Services (with particular 
thanks to Dave Baker for creating the website, and contributions from Samantha Curle and Andre 
Python), which lists courses (online and workshops) as well as recommended textbooks, websites etc.  

https://help.it.ox.ac.uk/courses/R 

The Software Carpentry Foundation website contains many tutorials for learning a variety of 
programming languages, including R. There is also a series of domain-specific Data Carpentry 
courses, which focus on computational skills needed to handle and analyse data - tutorials are 
currently available for Ecology, Genomics, Geospatial Data and Social Sciences, with others in 
development.  

https://software-carpentry.org/lessons/ 

https://datacarpentry.org/lessons/ 

In particular, the tutorials at the following links give further details and examples on some of the ideas 
already introduced or extend to other topics once you feel comfortable interacting with the R 
environment.  

http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html 

http://swcarpentry.github.io/r-novice-inflammation/11-supp-read-write-csv/index.html 

http://swcarpentry.github.io/r-novice-inflammation/12-supp-factors/index.html 

http://swcarpentry.github.io/r-novice-inflammation/10-supp-addressing-data/index.html 

http://swcarpentry.github.io/r-novice-inflammation/06-best-practices-R/index.html 

https://datacarpentry.org/R-genomics/ 

https://datacarpentry.org/r-intro-geospatial/ 

 

Getting Help 

As you read the R help pages, you will likely not find them terribly helpful. The R help function is most 
useful for refreshing your memory about specific functions you have used before. Unfortunately, it is 
not very useful for learning the language itself. 

There are several online forums used by R programmers, novice and expert, to get help and advice 
from their peers. Searching for your R problem will often give results from one of these forums. 

One page ‘quick reference’ documents: 

http://www.well.ox.ac.uk/bioinformatics/training/R_materials/r-cheat-sheet.pdf 

http://www.well.ox.ac.uk/bioinformatics/training/R_materials/R_reference_card.pdf 

Full R manual: 

http://www.well.ox.ac.uk/bioinformatics/training/R_materials/R-introduction_manual.pdf   

 

https://help.it.ox.ac.uk/courses/R
https://software-carpentry.org/lessons/
https://datacarpentry.org/lessons/
http://swcarpentry.github.io/r-novice-inflammation/13-supp-data-structures/index.html
http://swcarpentry.github.io/r-novice-inflammation/11-supp-read-write-csv/index.html
http://swcarpentry.github.io/r-novice-inflammation/10-supp-addressing-data/index.html
http://swcarpentry.github.io/r-novice-inflammation/06-best-practices-R/index.html
https://datacarpentry.org/R-genomics/
https://datacarpentry.org/r-intro-geospatial/
http://www.well.ox.ac.uk/bioinformatics/training/R_materials/r-cheat-sheet.pdf
http://www.well.ox.ac.uk/bioinformatics/training/R_materials/R_reference_card.pdf
http://www.well.ox.ac.uk/bioinformatics/training/R_materials/R-introduction_manual.pdf


  

   

Installing Packages 

When freshly installed, R has only its basic functions available. This is still a considerable number of 
functions and is adequate for a great many tasks. R's functionality is extended by the use of packages, 
each of which is a self-contained bundle of additional functions. These are typically written by people 
other than the main R developers, but a centralised repository of these packages (CRAN) is 
maintained and accessible from within R. 

For example, to install the package called 'limma', you would use: 

install.packages("limma") 

which downloads the files needed. You may be asked to choose where to download the files from, or 
asked to confirm that they will be installed to a user directory if you do not have admin permissions for 
your computer. Some R packages rely on other R packages. R handles all of those dependencies in 
the background and will download and install every needed package as part of installing the requested 
one. 

Installing packages does not make them available straight away. You need to tell R to make a package 
available in your current session using the command: 

library(limma) 

You will need to do this each time you restart R. This step is required so you don't waste memory by 
loading in packages you don't need every session. 

Note that the help() function only knows about functions that have been made available using the 
library() command. 

 

Bioconductor 

Bioconductor is a separate third-party repository of R code, specifically geared towards bioinformatics. 

https://www.bioconductor.org/ 

Many of the packages in Bioconductor are also available via CRAN using the usual package 
installation method. However, Bioconductor has its own preferred installation mechanism which gets 
around some of R's more annoying limitations with version incompatibilities. In particular, the packages 
in Bioconductor are updated more swiftly following the release of a new version of R. 

To get started with Bioconductor, use the following command: 

source("https://bioconductor.org/biocLite.R") 

This loads an R script hosted on the web that defines a new function. You then use this function in a 
similar way to how you would use the install.packages() function: 

biocLite("limma") 

Loading Bioconductor packages this way is typically a longer process but more reliable. 

https://www.bioconductor.org/

