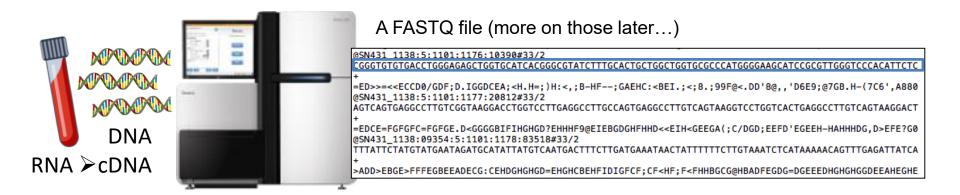


Next-Generation Sequencing Analysis


QC, Alignment and Variant Calling

Matthieu Miossec, PhD Bioinformatics Analyst @ Bioinformatics Core

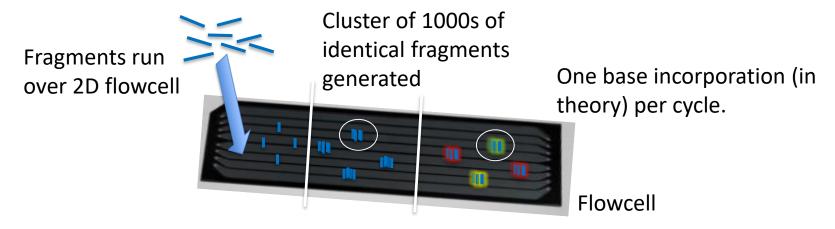
Sequencing At a Glance

 The process of determining a sequence of bases and producing a digital representation (aka. a read sequence) for further analysis.

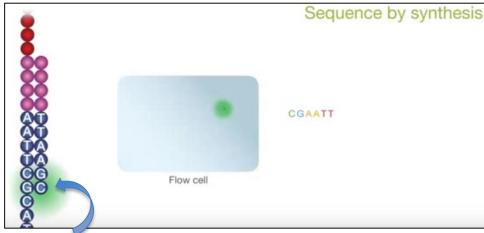
In an ideal world, we could sequence <u>entire</u> chromosomes <u>quickly</u> and get a <u>single error-free</u> readout for each chromosome as our output.

This is not the world we live in...

Innovations of NGS (Recap)



- Each NGS platform uses distinct biochemical processes for sequencing, but all share important attributes:
 - These processes are happening simultaneously for distinct fragments \rightarrow massively parallel.
 - PCR amplification is used to turn weak bioluminescent signals generated by a small fragment, into the strong signal of a cluster of ~1000 identical fragments.
 - Sequencing-by-synthesis (SBS)

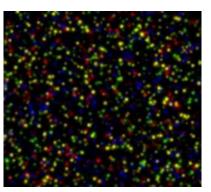


Sequencing-by-Synthesis (e.g. Illumina)

Captured with highly sensitive camera.

Fluorescent <u>reversible</u> chain terminators. Only chain terminating during a cycle, long enough for capture.

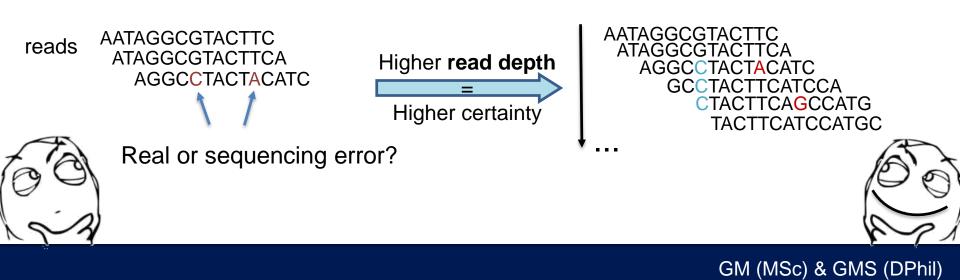
GCAATTGACAA ACGCCGT
CCTTCTTATTTCAGCAGTA
AGTAAGAAACAAAAGGCT
AACCTCCTTCTTATTTCAG
GCAATTGACAAACGCCGT
CCTTCTTATTCTTGCAGTA
AGTAAGAAACAAAAGGCTAAG
GCAATTGACAAACGCCGT
CCTTCTTATTCT AGCAGTA
GCAATTGACAAAAGGCTAAG
GCAATTGACAAAAGGCTAAG
GCAATTGACAAAAGGCTAAG
GCAATTGACAAAAGGCTAAG
GCAATTGACAAAAGCCTCAG
TAAGAAACAAAAGCCTAAG
GCAATTGACAAACCCTCATACTCTAGCCTAG
CCTTCTTATTCTTAGCCTAG
GCAATTGACAAACCCCGT
CCTTCTTATTCTTAGCCCGT
CCTTCTTATTCTTAGAGTA
AGTAAGAACTCAATGGCT
AACCTCCTTATTCTTAGAGTA


Flowcell during a given cycle. Multiple reads built in parallel.

https://youtu.be/fCd6B5HRaZ8

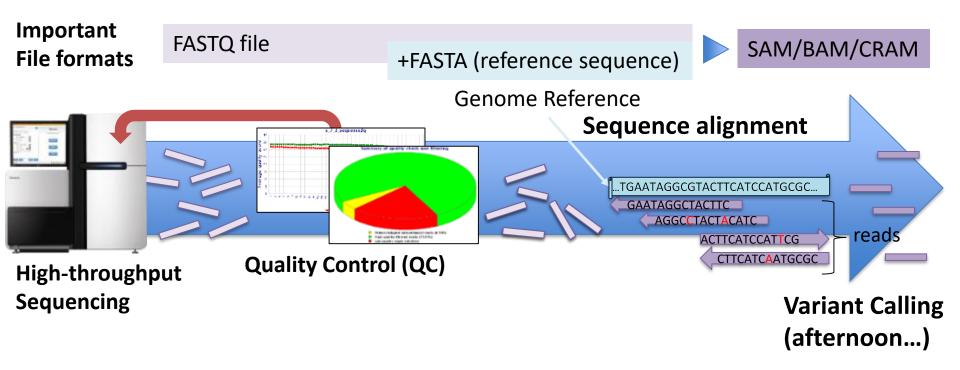
Limitations of NGS (short-read)

- New biochemical processes place constraints on read length and accuracy.
 - Determining the bases of a sequence (aka. **base calling**) via bioluminescence has several pitfalls:



- Signals from clusters in close proximity interfere with on another.
- Synchronicity between strands within a cluster is gradually lost with each cycle (size of reads ≡ number of cycles).
- The intensity of a signal naturally varies.
- A signal can be ambiguous where bases repeat (e.g. Did the machine detect C-C- or C-C-?).
- Another name for NGS: short read sequencing.

Accuracy from Redundancy



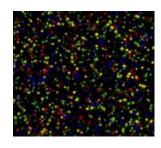
- Base call accuracy for NGS platforms is ~99.9% (~1 error every 1000 bases).
 - Far lower than Sanger method's 99.999%...however...
 - The high throughput nature of NGS platforms means most regions or loci are covered repeatedly by multiple reads. → read depth.

Quality Control, Alignment and File Formats OXFORD

- The first time you actually look at your data, it will most likely be in the FASTQ format.
 - Quality control and alignment performed on FASTQ.

- The simplest sequence file formats for storing sequence data (ext: .fasta, .fa...).
 - Contains <u>at least</u> one identifier line followed by a sequence (A,T,G,Cs...and N) of any given length.
 - One file can contain several separate sequences stored one after the other, each with its own identifier (e.g. human genome reference, with a sequence per chromosome)

Let's have a look at one recurring example: The Latest Human Genome Reference GRCh38


- Builds on FASTA, but crucially adds a line for base call gualities (ext: .fastq, .fq...).
 - Base call quality is shown as a sequence of ASCII values, each single character value representing a (typically) double-digit number.
 - Each value is the quality of the base directly above it in the DNA sequence.
 - When handling sequencing data, this is likely the first file format you will encounter.
 - Each sequence is a read from the sequencer

Let's take a look at another example!

Phred base Quality Score 1/2

 The process of base calling is imperfect. The way we quantify some of that uncertainty is using Phred quality scores.

- Each base call has an estimated probability *P* of being called incorrectly.
 (e.g. a *T* is called where a *C* should have been called)
- These probabilities can be expressed in logarithmic form:

$$Q = -10 \log_{10} P$$

Giving us a Phred base quality score.

Phred base Quality Score 2/2

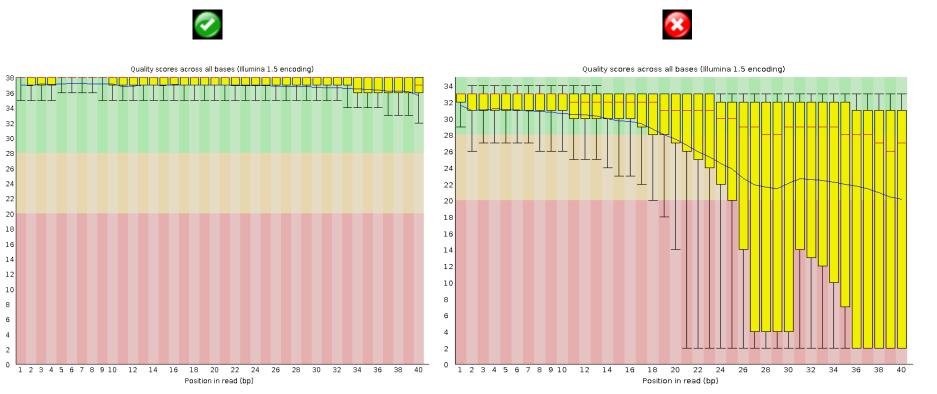
• The conversion between score and probability is fairly intuitive.

Q	$= -10 \ log_{10}$	P ↓
Phred quality score	Probability of incorrect base call	Base calling accuracy
10	1/10	90%
20	1/100	99%
30	1/1 000	99.9%
40	1/10 000	99.99%
50	1/100 000	99.999%

- These Phred quality scores are present in FASTQ files encoded in ASCII+(index for quality 0).
 - Phred+33 now the standard.
 - (i.e. 0 is encoded by ASCII symbol 33 or '!')

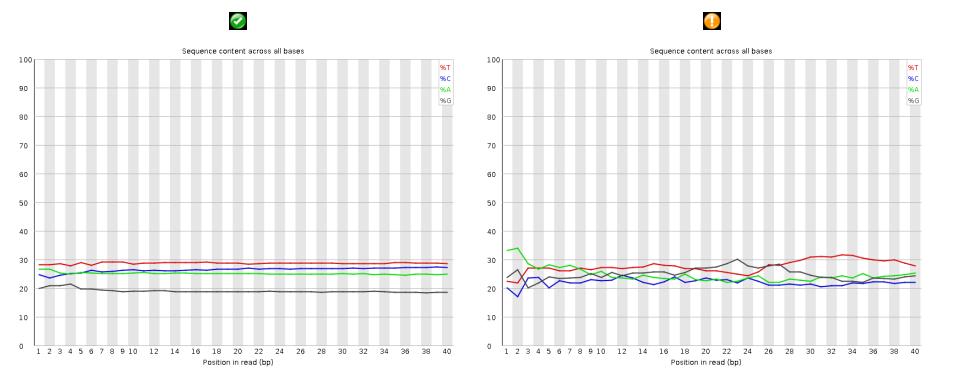
S - Sanger Phred+33, raw reads typically (0, 40)
X - Solexa Solexa+64, raw reads typically (-5, 40)
I - Illumina 1.3+ Phred+64, raw reads typically (0, 40)
J - Illumina 1.5+ Phred+64, raw reads typically (3, 41)
with 0=unused, 1=unused, 2=Read Segment Quality Control Indicator (bold)
 (Note: See discussion above).
L - Illumina 1.8+ Phred+33, raw reads typically (0, 41)
P - PacBio Phred+33, HiFi reads typically (0, 93)

Quality Control


- An absolutely crucial, unescapable step.
 - Bad quality data lead to disappointing results (garbage in → garbage out).

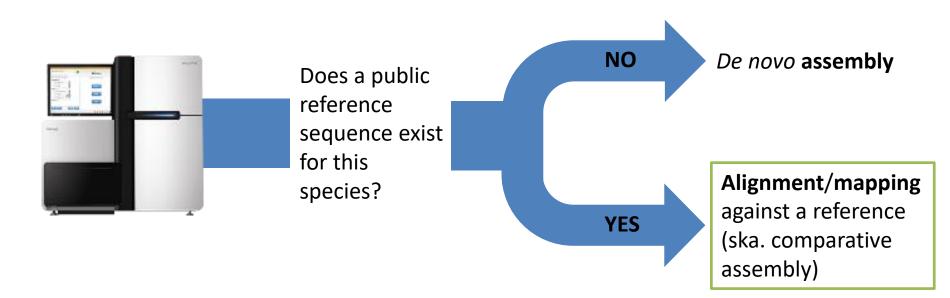
Quality Controlled Reads

Widely used for Illumina data because it's fast. It works on a subset of reads. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


Example: Per Base Sequence Quality 🥮

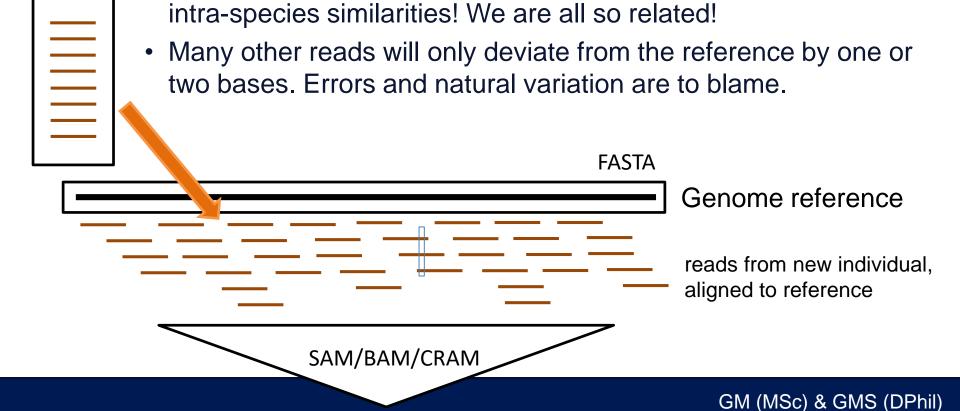
GM (MSc) & GMS (DPhil)

UNIVERSITY OF


Example: Per Base Sequence Content OXFORD

Assembly or alignment

- We have sequenced genomes/exomes and we just performed quality control, what are our options?
 - The first genome of a species has to be assembled from scratch (*de novo* assembly), a computationally intensive operation.

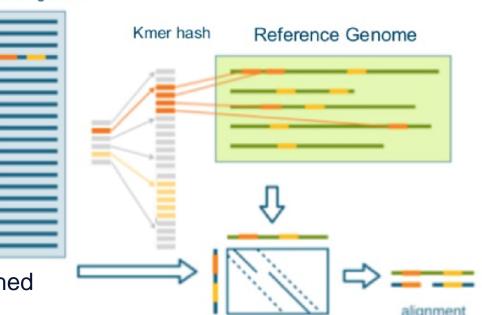


Alignment to a Reference

FASTO

- Once a complete species reference genome exists, we can align/map all subsequent individuals of the same species to it.
 - Good news! Many reads should align perfectly due to strong intra-species similarities! We are all so related!
 - Many other reads will only deviate from the reference by one or two bases. Errors and natural variation are to blame.

- Less computationally demanding does not mean aligning reads to a reference is simple:
 - Millions of short reads to map to an entire genome
 data structure for rapid matching is needed.
 - The presence of both errors and individual variation complicates the alignment process.
 - ➔ requires some clever dynamic programming.
 - Low complexity and repetitive regions are difficult to align to.
 - \rightarrow paired-end reads help in some cases.


Fast Alignment using Hash

 Fast aligners largely fall into two categories based on underlying data structure used to store and compare reads and reference:

Sequencing reads

- 1. Hash table
 - Used by aligners
 Novoalign and MAQ (also BLAST)
 - Reference genome stored as subsets of size k (aka. k-mers) in a hash.
 - Subsets of reads matched against the reference.

• Based on perfect matches, align mismatching parts of reads.

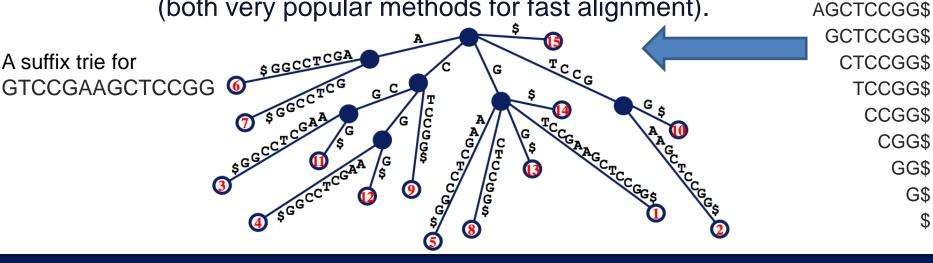
Fast Alignment using Tries

GTCCGAAGCTCCGG\$

TCCGAAGCTCCGG\$

CCGAAGCTCCGG\$

CGAAGCTCCGG\$


GAAGCTCCGG\$

AAGCTCCGG\$

S

- Fast aligners largely fall into two categories based on underlying data structure used to store and compare reads and reference:
 - 2. Suffix tries or arrays, or FM-index
 - Structures based on storing all possible suffixes of a sequence.
 - Used by BWA and Bowtie2. (both very popular methods for fast alignment).

A suffix trie for

Deviations from the reference

- Hashes and tries are useful for exact matches, but not all reads match a region of the reference.
 - Mismatches take different forms:
 - Single nucleotide alteration.

Ref...ATGATGCCATGACTGACCCTGAT...source: variant (SNV) orRead...ATGATGCCATGACTGACTGACACTGAT...base calling error.

- Jointly referred to as indels
- Insertion

Ref...TCCATGTGTGACTA****CACC...source: real insertion or regionRead...TCCATGTGTGACTATTTGTCACC...difficult to align

• Deletion

Ref...AAACTTAGTGCAACAGTGCACGAG...source: real deletion or regionRead...AAAC**AGTGCAACAGTGCACGAG...difficult to align

Phred Quality Score Revisited

 \rightarrow

- Phred quality scores are also used to quantify **mapping** uncertainty.
 - Mapping quality is applied to a single read rather than individual bases.

Basecall quality score (BQ o BASEQ). Also encoded in Phred-33.

ATTTGAACCATGAATTTGCCGATCAGATCCATGCA

Mapping quality score (MQ o MAPQ). Not encoded.

 We also need to account for insertions and deletions (in relation to the reference). This is done using a CIGAR (more in a minute...).

File format: Sequence Alignment/Mapping (SAM)

- Most popular fast-aligners (e.g. BWA, Bowtie2) take FASTQ as input and output SAM/BAM files.
 - Adds alignment information to FASTQ read data (i.e. position relative to reference, mapping quality, presence of insertions/deletions).

HWI-ST508 0109:8:2103:19403:137111#AT	CACG 83	chr1	16234	255	100M	=	16155	-179	T
TGCACACGAGCCAGCAGAGGGGTTTTGTGCCACTT	CTGGATGCTAGGGTT	ACACTGGGAG	ACACAGCAGI	GAAGCTGA	AATGAAAA	ATGTGTTG	CTG	******	##
#A:AABFGB;GGGGGGGEDBACCCDE5>?<@>DE D?</td <td>FCBFEEBDBFDFFFC</td> <td>:>@>CDDADD></td> <td>FDFFCECEEI</td> <td>OGGFGEGGE</td> <td>GGGGGGGE</td> <td>GGF</td> <td>NM:i:0</td> <td>NH:i:1</td> <td></td>	FCBFEEBDBFDFFFC	:>@>CDDADD>	FDFFCECEEI	OGGFGEGGE	GGGGGGGE	GGF	NM:i:0	NH:i:1	
HWI-ST508_0109:7:1204:3497:194785#ATC	ACG 163	chr1	16237	255	100M	=	16357	220	С
ACACACGAGCCAGCAGAGGGGTTTTGTGCCACTTCTG							TAG	DD@D=DE	EE
E@GGEEGGFDF <gd@ceeeeeg=ffgfbfbfhhghde< td=""><td>GGF@EEEBD>>=B:D</td><td>F=@FEGDGBD</td><td>/DDD@DD=CH</td><td>BFFGFDC@/</td><td>>BCDC###</td><td>***</td><td>NM:i:2</td><td>NH:i:1</td><td></td></gd@ceeeeeg=ffgfbfbfhhghde<>	GGF@EEEBD>>=B:D	F=@FEGDGBD	/DDD@DD=CH	BFFGFDC@/	>BCDC###	***	NM:i:2	NH:i:1	
HWI-ST508 0109:6:1104:12243:43788#ATC	ACG 355	chr1	16241	3	100M	=	16337	196	С
ACGAGCCAGCAGAGGCGTTTTGTGCCACTTCTGGATG	CTAGGGTTACACTGG	GAGATACAGC	AGTGAAGCTO	GAAATGAAA	AATGTGTT	GCTGTAGT	TTG	HHHHFHH	HH
НСННННННННБНБНЕНFHCHHHHHHHHHHHHHH	HHEHHHHHAFE?FCF	FFFHEHDFFE	EFEEGEGFGF	HH?GDCFG	GHHHF?FC	GGC	NM:i:2	NH:i:2	C
C:Z:chr15 CP:i:102514823 HI:i:	0								

Let's take a look at an example using `samtools view`!

Alignment Information

• SAM/BAM file contains the following info about each read alignment.

E@GGFFGGLDE <gd@cfffffg=legebeb< th=""><th>THHGHDEGGF@EEEBI</th><th>)>>=B:DE=</th><th>@FEGDGBD,</th><th>DDD@DD=0</th><th>BFFGFDC</th><th>@/>BCDC</th><th>******</th><th>NM:1:2</th><th>NH:1:1</th><th></th></gd@cfffffg=legebeb<>	THHGHDEGGF@EEEBI)>>=B:DE=	@FEGDGBD,	DDD@DD=0	BFFGFDC	@/>BCDC	******	NM:1:2	NH:1:1	
HWI-ST508_0109:6:1104:12243:43	788#ATCACG	355	chr1	16241	3	100M	=	16337	196	С
ACGAGCCAGCAGAGGCGTTTTGTGCCACTT	CTGGATGCTAGGGTT	ACACTGGGA	GATACAGC	AGTGAAGCT	GAAATGA	AAAATGT	GTTGCTGTA	GTTTG	HHHHFH	HHH
НСННННННННБНБНЕНFHCHHHHHHHHH	нныстрынанны	FE?FCFFF	FHEHDFFE	FEEGEGFO	SHHH?GDC	FGGHHHF	FCGGC	NM:i:2	NH:i:2	С
C:Z:chr15 CP:i:102514823	HI:i:O									

- Position relative to reference where a read (inc. chromosome) and its corresponding read pair (incl. relative to the first half) are mapped.
- Mapping quality (MAPQ).
- The CIGAR (Concise Idiosyncratic Gapped Alignment Report*)
- A Bitwise flag for additional information about the read.

Bitwise flag and CIGAR

• Crucial bits of information about a given read can be stored in a single bit.

Bit		Description
1	0x1	template having multiple segments in sequencing
2	0x2	each segment properly aligned according to the aligner
4	0x4	segment unmapped
8	0x8	next segment in the template unmapped
16	0x10	SEQ being reverse complemented
32	0x20	SEQ of the next segment in the template being reverse complemented
64	0x40	the first segment in the template
128	0x80	the last segment in the template
256	0x100	secondary alignment
512	0x200	not passing filters, such as platform/vendor quality controls
1024	0x400	PCR or optical duplicate
2048	0x800	supplementary alignment

The bit is a sum of the statements that are true about a read (e.g. 1033 corresponds to 1, 8 and 1024).

A CIGAR signals where a reads needs an insertion/deletion to "match" the reference. e.g. 40M5I30M2D25M

ATGATGCCATGACCCTGATGGTCCATGTGTGACTA****CACCACATGCTGGATAGGTGCCCGTGAAACTTAGTGCAACAGTGCACGAGATGAGGAGTG

ATGATGCCATGACCGACCTGATGGTCCATGTGTGACTATTTGTCACCACATGCTG<u>T</u>ATAGGTGCCCGTGAAAC**AGTGCAACAGTGCACGAGATGAGGAGTG

Preparing files for variant calling

- Once SAM files have been generated, a number of steps can be reduce file size and prepare the file for variant calling:
 - SAM files can be compressed to smaller binary files.
 → BAM, no longer human-readable.
 - Crucial when sequencing hundreds of samples.
 - BAM files can then be sorted and indexed to further reduce size and speed up subsequent variant calling.
 - Duplicates are removed.
- If using GATK, one final step is needed*
 → Base Quality Score Recalibration (BQSR)

Variant calling and genotyping

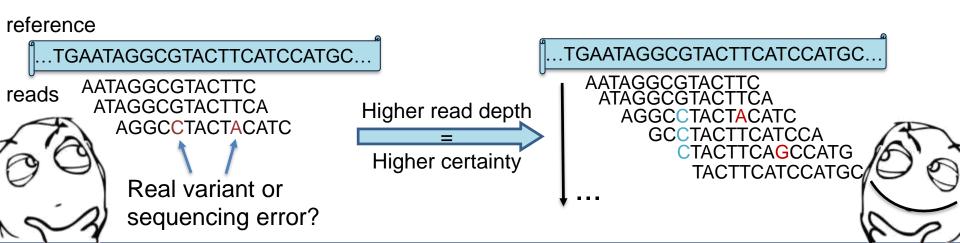
- A number of reads mapped to the reference contain one or more bases deviating from the reference.
 - - read depth, base/mapping quality scores, fits within an existing genotype configuration, larger haplotype context...

As a useful secondary goal, a variant caller can produce a genotype assignment.

 For a human sequence this is codified as: -0/0 or 1/1 (homozygous wildtype and variant respectively) -0/1 (heterozygous)

Read Depth/Coverage

- Base call accuracy for NGS platforms is usually around ~99.9%* (~1 error every 1000 bases).
 - However, the high throughput nature of these platforms translates to most regions or loci being covered by multiple reads.


Read 1:	CGGATTACGTGGACCA	T	G (read length of 18)
Read 2:	ATTACGTGGACCA	T	GAATTGCTĞACA
Read 3:	ACCA	T	GAATTGCTGACATTCGTCA
Read 4:		T	GAATTGCTGACATTCGTCAT
Depth:	111222222223333	4	43333333333322222221
Station and a state of the			

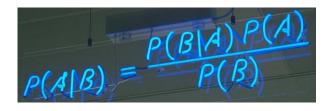
*Remember, that Sanger method has 99.999% base call accuracy.

Calling Variants with Read Depth

- The quantity of reads that overlap a locus of interest → read depth.
 - Consensus between reads gives us our first clue at the validity of a variant. More reads constitutes more evidence confirming or denying the existence of a variant at said locus.
 - Genotypes can be derived from read depth as well (homozygous variant would appear in most reads, heterozygous in about half the reads).

Using Quality Scores and More

 Another aspect of reads that a variant caller needs to account for is base and mapping quality.


reference

...TGAATAGGCGTACTTCATCCATGC...

AATAGGCGTACTTC ATAGGCGTACTTCA	MQ: 60 BQ: 38
AGGCCTACTACATC	MQ: 60 BQ: 32
GCCTACTTCATCCA	MQ: 5 BQ: 15
GTACTTCAGCCATG	MQ: 10 BQ: 10
	MQ: 10 BQ: 5

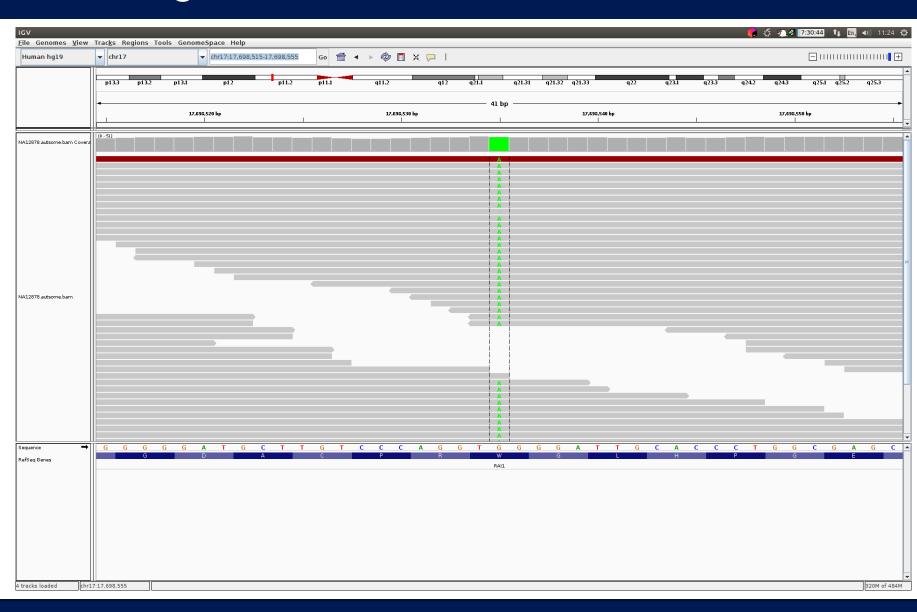
In this example, **C** doesn't look as good as it did previously.

 The various lines of evidence are usually combined using some form of Bayesian statistics.

• GATK HaplotypeCaller further incorporates local realignment and haplotype context.

VCF Format

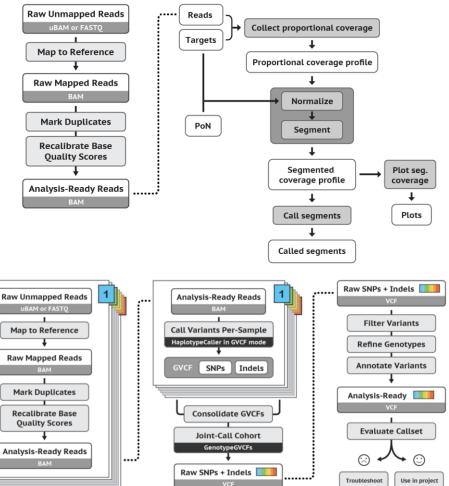
- The Variant Call Format (VCF) is designed to be human-readable.
 - We can use it for some further quality filtering
 - Filtering by genotype, particularly if working with families.


##fileformat=VCFv4.2							
##fileDate=20090805							
##source=myImputationProgramV3.1							
##reference=file:///seq/references/1000GenomesPilot-NCBI36.fasta							
<pre>##contig=<id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo sapiens",taxonomy="x"></id=20,length=62435964,assembly=b36,md5=f126cdf8a6e0c7f379d618ff66beb2da,species="homo></pre>							
##phasing=partial							
##INFO= <id=ns,number=1,type=integer,description="number data"="" of="" samples="" with=""></id=ns,number=1,type=integer,description="number>							
##INF0= <id=dp,number=1,type=integer,description="total depth"=""></id=dp,number=1,type=integer,description="total>							
##INFD= <id=af,number=a,type=float,description="allele frequency"=""></id=af,number=a,type=float,description="allele>							
##INFO= <id=aa,number=1,type=string,description="ancestral allele"=""></id=aa,number=1,type=string,description="ancestral>							
##INFO= <id=db,number=0,type=flag,description="dbsnp 129"="" build="" membership,=""></id=db,number=0,type=flag,description="dbsnp>							
##INFO= <id=h2,number=0,type=flag,description="hapmap2 membership"=""></id=h2,number=0,type=flag,description="hapmap2>							
##FILTER= <id=q10,description="quality 10"="" below=""></id=q10,description="quality>							
##FILTER= <id=s50,description="less 50%="" data"="" have="" of="" samples="" than=""></id=s50,description="less>							
##FORMAT= <id=gt,number=1,type=string,description="genotype"></id=gt,number=1,type=string,description="genotype">							
##FORMAT= <id=gq,number=1,type=integer,description="genotype quality"=""></id=gq,number=1,type=integer,description="genotype>							
##FORMAT= <id=dp, description="Read Depth" number="1," type="Integer,"></id=dp,>							
##FORMAT= <id=hq,number=2,type=integer,description="haplotype quality"=""> #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT NA00001 NA00002 NA00003</id=hq,number=2,type=integer,description="haplotype>							
20 17330 T A 3 q10 NS=3;DP=11;AF=0.017 (GT:GQ:DP:HQ 0 0:49:3:58,50 0 1:3:5:65,3 0/0:41:3) 20 1110696 rs6040355 A G,T 67 PASS NS=2;DP=10;AF=0.333,0.667;AA=T;DB GT:GQ:DP:HQ 1 2:21:6:23,27 2 1:2:0:18,2 2/2:35:4							
20 1230237 . T . 47 PASS NS=3;DP=13;AA=T GT:GQ:DP:HQ 0 0:54:7:56,60 0 0:48:4:51,51 0/0:61:2							
20 1234567 microsat1 GTC G,GTCT 50 PASS NS=3;DP=9;AA=G GT:GQ:DP 0/1:35:4 0/2:17:2 1/1×40:3							

Checking a locus with IGV

 IGV File Genomes View 	Trac <u>k</u> s Regions Tools GenomeSpace Help	
Human hg19	▼ chr13 ▼ chr13:28,623,514-28,624,487 Go [⊕] □ × □ [⊕] [□] □ □ □ □ □ □ □ □ □ □ □ □ □ □	+
	۹74 bp —	q34
	bp 28,623,600 bp 28,623,700 bp 28,623,800 bp 28,623,900 bp 28,624,000 bp 28,624,100 bp 28,624,200 bp 28,624,200 bp 28,624,300 bp 28,624,400 bp	28
NSGC-1.3_P_C1KGGACXX-4-1 sort.bam Coverage		
NSGC-1.3_P_C1KGGACXX-4-12 sort.bam		
4 tracks loaded chr1	13:28,623,960 460M c	• of 902M

Checking a locus with IGV



Available pipelines

- The various tools for QC/Alignment/Variant Calling can be and have been organized into pipelines.
 - The Broad Institute provide their preferred pipelines using WDL.
 - For cases in which one wants to create their own pipeline:

Thanks for listening! Any questions?

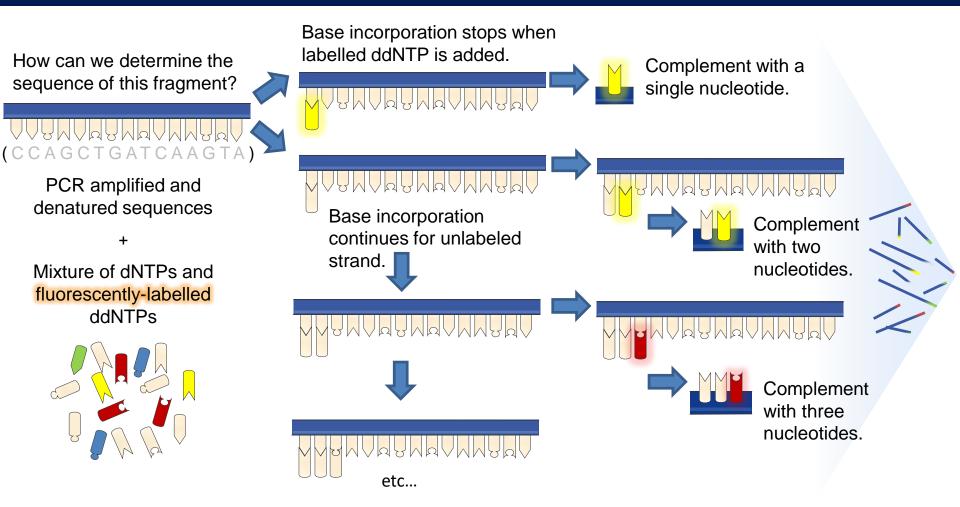
UNIVERSITY OF

Extra: Early Sequencing

- For nearly 40 years, dominant approach to sequencing
 → Sanger method.
 - Originally quite <u>lab</u>orious, progressively automated.
 - Various organisms first sequenced using Sanger, incl. *Homo sapiens* with The Human Genome Project (HGP)
 - Begun in 1990, took 13 years to 'complete'.

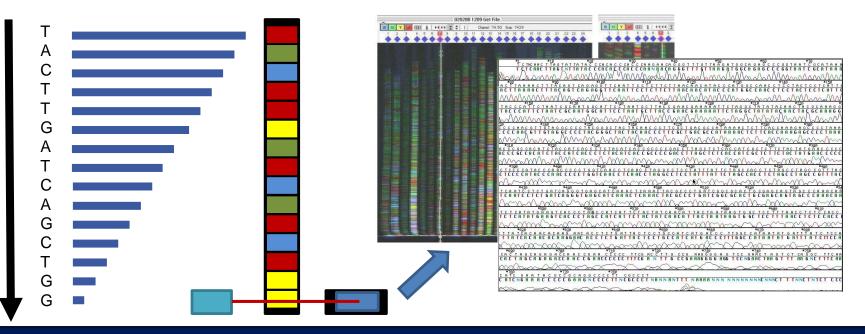
 Complete euchromatic sequence of the human genome (~92%), used as a reference

in successive projects.



Twice Nobel Prize winner Frederick Sanger

Extra: How does Sanger work? 1/2



Random terminator incorporation process gives rise to multiple incomplete complement fragments where <u>length acts as a proxy for position</u> at which the chain terminating ddNTP was incorporated!

Extra: How does Sanger work? 2/2

- Complement fragments passed through capillary tube using electrophoresis, their final ordering determined by size.
 - The smaller a fragment the faster the pass through.
 - ddNTP fluorescence captured via laser excitation.

Extra: Sanger Method's success

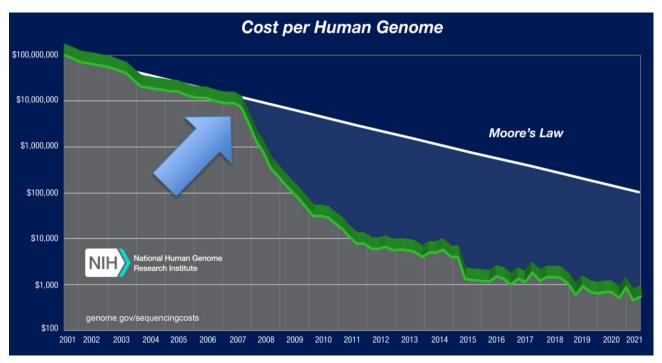
- To this day, Sanger's <u>single read per base quality</u> remains unmatched.
 - For a fragment of ~500 base pairs (bp), per base accuracy → 99.999%
 - Note that's still 1 error per 100 000 bases.
 - Fragments now reach up to 1000 bp in length.



How do you sequence the 3 billion base pairs of the human genome with technology that only takes fragments of (up to*) 1000bp at a time?

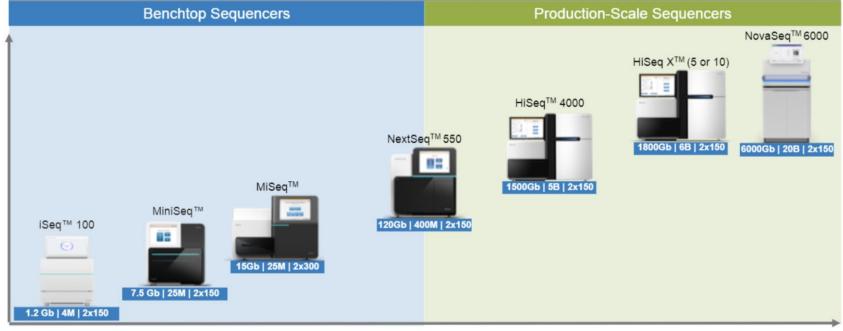
Extra: Shotgun approach to Seq.

- Developed to speed up the HGP and replace slow and costly clone-by-clone approach.
 - Genome broken into small **overlapping** sequencingready fragments, all clonally amplified.
 - No ordering conserved in the process.
 - Computational biologists now have a **BIG** problem to solve
 mapping billions of reads back to the genome.



UNIVERSITY OF

Extra: Next-generation Sequencing


- Mid-2000s: high-throughput/massively parallel sequencing (HTS/MPS) platforms released:
 - Referred to as next-generation sequencing (NGS)*.
 - A 13 year endeavor now takes days and costs ~1000\$.

*Despite newer platforms, the name persists.

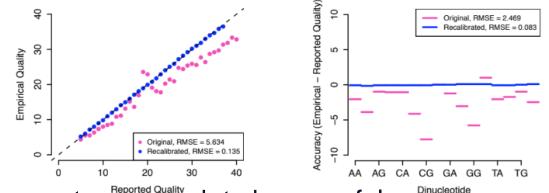
Extra: The First Three NGS Platforms

 Next-generation sequencing (NGS) originally referred two three sequencing platforms:

Decreasing Price Per Gigabase (Gb)

Today Illumina dominates the sequencing market (~80%) with a wide range of platforms tailored to different needs.

UNIVERSITY OF



UNIVERSITY OF

Extra: GATK's BQSR step

- Base quality scores are only as good as the error predictions a platform makes.
 - Some systematic biases have been observed.
 - These can be addressed using known variants at a population level (e.g. the dbSNP database).
 - Base changes present in the data and also present in a database
 - treated as real.
 - Other variants treated as errors.

These assumptions are true endowing to be a useful approximation.