Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Recently, by whole exome sequencing of schizophrenia (SCZ) patients, we identified a subject that was homozygous for a novel missense substitution (c.391 A > G) in the glutamate acid decarboxylase 1 (GAD1) gene. GAD1 encodes for GAD67 enzyme, catalyzing the production of gamma-aminobutyric acid (GABA) from L-glutamic acid. Here, we studied the impact of this mutation on GAD67 activity, dimerization and subcellular localization. Biochemical assay revealed that c.391 A > G reduces GAD67 enzymatic activity by ~30%, probably due to the impaired homodimerization of homozygous mutants as highlighted by proximity ligation assays. The mutational screening of 120 genes of the "GABAergic system" in a cohort of 4,225 SCZ cases and 5,834 controls (dbGaP: phs000473.v1.p2), did not identify other cases that were homozygous for ultra-rare variants in GAD1, but highlighted an increased frequency of cases that were homozygous for rare variants in genes of the GABA system (SCZ: 0.14% vs. Controls: 0.00%; p-value = 0.0055). In conclusion, this study demonstrates the functional impact of c.391 A > G variant and its biological effect makes it a good candidate as risk variant for SCZ. This study also supports an involvement of ultra-rare variants in GABAergic genes in the etiopathogenesis of SCZ.

Original publication




Journal article


Scientific reports

Publication Date





Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.


Humans, gamma-Aminobutyric Acid, Glutamate Decarboxylase, Glutamic Acid, Schizophrenia, Homozygote, Mutation, Missense, Adult, Male, Mutant Proteins, Protein Multimerization