Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although having been the subject of intense research over the years, cardiac function quantification from MRI is still not a fully automatic process in the clinical practice. This is partly due to the shortage of training data covering all relevant cardiovascular disease phenotypes. We propose to synthetically generate short axis CINE MRI using a generative adversarial model to expand the available data sets that consist of predominantly healthy subjects to include more cases with reduced ejection fraction. We introduce a deep learning convolutional neural network (CNN) to predict the end-diastolic volume, end-systolic volume, and implicitly the ejection fraction from cardiac MRI without explicit segmentation. The left ventricle volume predictions were compared to the ground truth values, showing superior accuracy compared to state-of-the-art segmentation methods. We show that using synthetic data generated for pre-training a CNN significantly improves the prediction compared to only using the limited amount of available data, when the training set is imbalanced.

Original publication

DOI

10.1038/s41598-022-06315-3

Type

Journal article

Journal

Scientific reports

Publication Date

14/02/2022

Volume

12

Addresses

Advanta, Siemens SRL, Brașov, Romania. bogdan.gheorghita@siemens.com.

Keywords

Heart Ventricles, Humans, Magnetic Resonance Imaging, Cine, Stroke Volume, Ventricular Function, Left, Image Processing, Computer-Assisted, Deep Learning, Neural Networks, Computer