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Introduction

The aim of population genetics is to understand the factors affecting genetic variation
in populations.

Example: HIV-1 variation within a patient
(Derdeyn et al. 2004)

vir1 AATAAAATTTGAA
vir2 AATAAAATTTGAA
vir3 AATAGGATTTAAA
vir4 AATAAAATTTGAA
vir5 AATAAAATTTAAA
vir6 AATAAAATTTGAA
vir7 AATAACATTTAAA
vir8 AATAAAATTTAAA
vir9 AATAAAATTTAAA
vir10 AATAAAATTTAAG

Variation differs between genes, populations
and species, and is influenced by:

mutation

recombination

demographic stochasticity

natural selection

migration
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Introduction

Population genetics provided the conceptual framework for the Modern Synthesis of
Darwinian evolution and Mendelian genetics.

Evolution by natural selection (Darwin, 1859): Heritable traits that increase
reproductive success will become more common in a population.

Variation within populations - individuals have different traits (phenotypes).

Heritability - offspring are similar to their parents.

Selection - traits influence reproductive success and survivorship (fitness).

Examples of traits that can influence fitness:

body size (thermoregulation)

immunity/disease resistance

ornaments (sexual selection)

Jay Taylor () Diffusion Processes in Population Genetics 2009 5 / 154



Introduction

Population genetics provided the conceptual framework for the Modern Synthesis of
Darwinian evolution and Mendelian genetics.

Evolution by natural selection (Darwin, 1859): Heritable traits that increase
reproductive success will become more common in a population.

Variation within populations - individuals have different traits (phenotypes).

Heritability - offspring are similar to their parents.

Selection - traits influence reproductive success and survivorship (fitness).

Examples of traits that can influence fitness:

body size (thermoregulation)

immunity/disease resistance

ornaments (sexual selection)

Jay Taylor () Diffusion Processes in Population Genetics 2009 5 / 154



Introduction

Population genetics provided the conceptual framework for the Modern Synthesis of
Darwinian evolution and Mendelian genetics.

Evolution by natural selection (Darwin, 1859): Heritable traits that increase
reproductive success will become more common in a population.

Variation within populations - individuals have different traits (phenotypes).

Heritability - offspring are similar to their parents.

Selection - traits influence reproductive success and survivorship (fitness).

Examples of traits that can influence fitness:

body size (thermoregulation)

immunity/disease resistance

ornaments (sexual selection)

Jay Taylor () Diffusion Processes in Population Genetics 2009 5 / 154



Introduction

Population genetics provided the conceptual framework for the Modern Synthesis of
Darwinian evolution and Mendelian genetics.

Evolution by natural selection (Darwin, 1859): Heritable traits that increase
reproductive success will become more common in a population.

Variation within populations - individuals have different traits (phenotypes).

Heritability - offspring are similar to their parents.

Selection - traits influence reproductive success and survivorship (fitness).

Examples of traits that can influence fitness:

body size (thermoregulation)

immunity/disease resistance

ornaments (sexual selection)

Jay Taylor () Diffusion Processes in Population Genetics 2009 5 / 154



Introduction

To fully understand evolution, we need a mechanistic theory that explains how variation
is created and inherited. Darwin struggled with these questions and proposed a model of
blending inheritance - offspring traits are averages of the parental traits.

Mendelian genetics (Mendel, 1859) provided a particulate theory of inheritance:

Traits are determined by genes.

There are finitely many kinds of each gene called alleles.

Different alleles may produce different traits.

Offspring are similar to their parents because they inherit their genes from their
parents.
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Introduction

Mendel’s particulate theory of inheritance was eventually explained by molecular
genetics.

Genetic information is stored by structures called chromosomes that are made up
of DNA.

DNA is a polymer - a molecule that is a sequence of nucleotides, TCAG.

Genes are translated into proteins which in turn are responsible for the physical
characteristics of organisms: size, color, behavior, immunity, etc.

Genetic and phenotypic variation are generated by chemical changes to an
individual’s DNA called mutations.

Most species are either:

haploid - they have a single copy of each chromosome, or

diploid - they have two copies of each chromosome, usually one inherited from
each parent.
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Introduction

Rather than study changes in the frequencies of traits, population genetics focuses on
the underlying genetic variation: How do allele frequencies change over time?

Example: Wing color variation in the scarlet tiger
moth (Callimorpha dominula). Three different
morphs occur and breeding experiments have shown
that the wing color pattern is a simple Mendelian
trait:

dominula - AA

medionigra - Aa

bimacula - aa
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Introduction

The frequency of the medionigra morph in the Cothill Fen population in Oxfordshire was
estimated from population samples collected annually between 1939 and 1979 (O’Hara,
2005).

Estimated frequency of the medionigra morph 
in the Cothill scarlet tiger moth population
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Questions:

Why is there a downward trend in the frequency?

What accounts for the fluctuations around that trend?

Jay Taylor () Diffusion Processes in Population Genetics 2009 9 / 154



Introduction

The frequency of the medionigra morph in the Cothill Fen population in Oxfordshire was
estimated from population samples collected annually between 1939 and 1979 (O’Hara,
2005).

Estimated frequency of the medionigra morph 
in the Cothill scarlet tiger moth population

0

0.02

0.04

0.06

0.08

0.1

0.12

1935 1940 1945 1950 1955 1960 1965 1970 1975 1980

year

fr
e
q

u
e
n

cy

Questions:

Why is there a downward trend in the frequency?

What accounts for the fluctuations around that trend?

Jay Taylor () Diffusion Processes in Population Genetics 2009 9 / 154



Markov Chains - Review

Markov Chains - A Brief Review

Let E = {e1, · · · , en} be a finite set.

1.) Discrete-time Markov chains:

We say that a sequence of E -valued random variables, (Xn : n ∈ N), is a discrete-time
Markov chain if for every n, k ≥ 0 and every A ⊂ E :

P{Xn+k ∈ A|(X0, · · · ,Xn)] = P[Xn+k ∈ A|Xn].

In other words, if we know the present, then the past provides no additional information
that can be used to predict the future.
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Markov Chains - Review

Any discrete-time Markov chain can be characterized by its transition matrix P = (pij),
where

pij = P{Xn+1 = ej |Xn = ei}.

Recall that the multi-step transition probabilities can be found by raising P to the
appropriate power:

P{Xn+k = ej |Xn = ei} = (Pk)ij .
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Markov Chains - Review

2.) Continuous-time Markov chains:

We say that a sequence of E -valued random variables, (Xt : t ≥ 0), is a continuous-time
Markov chain if for every t, s ≥ 0 and every A ⊂ E :

P[Xt+s ∈ A|Xu, 0 ≤ u ≤ t] = P[Xt+s ∈ A|Xt ].

A continuous-time Markov chain can be characterized by its rate matrix, Q = (qij),
where

qij = lim
s↓0

1

s
P{Xt+s = ej |Xt = ei} if j 6= i

qii = −
X
j 6=i

qij

The transition probabilities are given by the exponential of the rate matrix:

P{Xt+s = ej |Xt = ei} = (P(s))ij ,

where

P(s) = eQs ≡
X
n≥0

1

n!
Qnsn.
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Markov Chains - Review

There are two equivalent ways to construct a continuous-time Markov chain.

(i) Given Xt = ei , simulate a collection of independent, exponentially distributed random
variables, τj , j 6= i , where τj has mean q−1

ij . If

τ ≡ min{τj : j 6= i} = τk ,

then

Xt+s = ei for s ∈ [0, τ)

Xt+τ = ek .

In other words, Xt jumps from state i to state j at (exponential) rate qij .
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Markov Chains - Review

(ii) Alternatively, simulate one exponentially-distributed random variable, τ , with mean
(−qii )

−1, and choose Xt+τ ∈ E according to the distribution

pij ≡
qijP

k 6=i qik
if j 6= i

Notice that P = (pij) is a stochastic matrix and so determines a discrete-time Markov
chain. This chain is called the embedded Markov chain and is obtained by considering
the continuous-time process at the jump times.
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Markov Chains - Review

Integrals and Expectations

If Z is a real-valued random variable with distribution P(dz), then

P{Z ∈ A} =

Z
A

P(dz),

for A ⊂ R.

Likewise, by the Law of the Unconscious Statistician,

E[f (Z)] =

Z
R

f (z)P(dz)

=

Z
R

f (z)p(z)dz if Z has density p(z)

=
NX

i=1

f (z)P{Z = zi} if Z is discrete
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Two Classic Models Wright-Fisher Model

Two classic models in population genetics:

Wright-Fisher model

Assumptions:

Constant population size: N haploid adults.

Non-overlapping generations.

Generation t + 1 is formed from generation t by choosing the parent of each
individual uniformly at random and with replacement.

Two alleles A1 and A2.

Intuition: Each parent gives birth to a large number of offspring, but only N offspring
survive to form the next generation.
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Two Classic Models Wright-Fisher Model

If X (t) denotes the number of individuals of type A1 in the t’th generation, then
(X (t), t ≥ 0) is a discrete-time Markov chain. Furthermore, the distribution of X (t + 1)
conditional on X (t) = k is Binomial(N, p), where p = k/N is the frequency of A1:

P{X (t + 1) = m|X (t) = Np} =

 
N

m

!
pm(1− p)N−m.

However, usually we are only interested in the frequency of A1 and we define the
Wright-Fisher process (p(t), t ≥ 0) to be

p(t) ≡ X (t)

N
.

Of course, (p(t) : t ≥ 0) is also a discrete-time Markov chain.
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Two Classic Models Wright-Fisher Model

If δ = p(t + 1)− p(t) is the change in the allele frequency over generation t, then

E
h
δ
˛̨̨
p(t) = p

i
= 0

E
h
δ2
˛̨̨
p(t) = p

i
=

1

N2
Np(1− p) =

p(1− p)

N
.

Thus, two key properties of the neutral Wright-Fisher process are:

The expected allele frequency is constant.

The variance of the allele frequency fluctuations is inversely proportional to the
population size.
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Two Classic Models Wright-Fisher Model

One measure of genetic diversity at a biallelic locus is the quantity

H(p) = 2p(1− p),

which is the probability that a sample of two individuals, chosen with replacement,
contains both alleles.

To see how H(p) changes from generation to generation in the Wright-Fisher model,
observe that

Ep

ˆ
H(p(1))

˜
= 2Ep

ˆ
p(1)− p(1)2˜

= 2Ep

ˆ
p(1) + p2 − 2pp(1)− (p(1)− p)2˜

=
`
1− 1/N

´
2p(1− p)

=
`
1− 1/N)H(p(0)).
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Two Classic Models Wright-Fisher Model

By induction on t, it follows that

Ep

ˆ
H(p(t))

˜
=
`
1− 1/N

´t
2p(1− p),

and so the expected diversity decreases geometrically at a rate that is inversely related
to the N.

The random process by which allele frequencies change is often called genetic drift.
Genetic drift tends to remove genetic variation from populations. Furthermore, smaller
populations loose variation more rapidly than larger populations.
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Two Classic Models Wright-Fisher Model

Observe that p = 0 and p = 1 are absorbing states for the Wright-Fisher process. In
the absence of mutation, an inevitable consequence of genetic drift is that one of the
two alleles will be lost. When this happens, the surviving allele is said to be fixed in the
population.

Theorem: Let τ = inf{t ≥ 0 : p(t) ∈ {0, 1}} be the first time that one of the two
alleles is fixed in the population. Then τ is almost surely finite, i.e., P{τ <∞} = 1.

Proof: Let κ(p) = P{p(1) ∈ {0, 1}|p} be the probability that A1 is either lost or fixed
at time 1 given that its initial frequency is p. Then

κ(p) = pN + (1− p)N > 2−N ≡ κ > 0

for all p ∈ [0, 1].
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Two Classic Models Wright-Fisher Model

By the Markov property, it follows that

P{τ > t} < (1− κ)t ,

and so
P{τ =∞} = lim

t→∞
(1− κ)t = 0.

Thus, fixation occurs in finite time, as claimed. �

This proof also implies that the expected time to fixation,

τ(p) ≡ Ep[τ ],

is finite. Let us try to calculate τ(p).
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Two Classic Models Wright-Fisher Model

Notice that by conditioning on the value of p(1) and using the Markov property, we
obtain the identity

τ(p) = 1 +
X

q

Pp{p(1) = q}τ(q).

This expresses τ(p) as the solution to a certain linear equation. However, this equation
can only be easily solved when N is small. On the other hand, because the variance of
p(1) about p(0) = p is of order p(1− p)/N, we can surmise that when N is large, the
dominant terms in the sum are those in which q ≈ p. This suggests the following
approximation.
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Two Classic Models Wright-Fisher Model

Suppose that we can expand τ(q) in a Taylor series about p:

τ(p) = 1 +
X

q

Pp{p(1) = q}
„
τ(p) + τ ′(p)δ +

1

2
τ ′′(p)δ2

«

+
X

q

Pp{p(1) = q}
„

1

6
τ ′′′(p)δ3 + O(δ4)

«

= 1 + τ(p) + Ep[δ]τ ′(p) +
1

2
Ep[δ2]τ ′′(p) + O(N−2)

= 1 + τ(p) +
p(1− p)

2N
τ ′′(p) + O(N−2),

where δ = p(1)− p.
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Two Classic Models Wright-Fisher Model

Consequently, for large N, we expect τ(p) to approximately satisfy the differential
equation,

τ ′′(p) ≈ −2N

p(1− p)
,

with boundary conditions τ(0) = τ(1) = 0.

This can be solved explicitly and gives:

τ(p) ≈ −2N(p log(p) + (1− p) log(1− p)).

Thus, for the Wright-Fisher model, the expected time to fixation is of order O(2N) if
neither allele is initially rare.
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Two Classic Models Wright-Fisher Model

Suppose that f : [0, 1]× R→ R is smooth. For some applications, we would like to
know how the expected value,

u(p, t) ≡ Ep

ˆ
f (p(t), t)

˜
,

changes through time. In principle, this quantity can be determined by raising the
transition matrix of (p(t)) to the appropriate power, but unless N is small, the required
calculations are too cumbersome to be of use.

As in the previous example, we can find an approximate solution when N is large. Let us
introduce a new function,

U(p, t) ≡ u(p,Nt),

which is the expected value of f when time is measured in units of N generations.
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Two Classic Models Wright-Fisher Model

Then, using the Markov property and supposing that U(p, t) can be expanded in a
Taylor series in both variables,

U(p, t) =
X

q

Pp{p(1) = q}U(q, t − 1/N)

=
X

q

Pp{p(1) = q}
“
U(p, t) + (q − p)∂pU(p, t)

+
1

2
(q − p)2∂2

pU(p, t)− 1

N
∂tU(p, t)

”
+ O(N−2)

= U(p, t) +
p(1− p)

2N
∂2

pU(p, t)− 1

N
∂tU(p, t) + O(N−2).
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Two Classic Models Wright-Fisher Model

Thus, for large N, we expect U(p, t) to approximately satisfy the following partial
differential equation:

∂tU(p, t) ≈ 1

2
p(1− p)∂2

pU(p, t), (∗)

with initial value U(0, p) = f (p). �

For example, U(p, t) = e−tp(1− p) solves (*) when f (p) = p(1− p), which can be
compared with the exact solution that we found earlier:

u(p,Nt) = Ep

ˆ
H(p(Nt))

˜
=
`
1− 1/N)Ntp(1− p)

≈ e−tp(1− p).
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Two Classic Models Moran Model

The second model that we will consider is the Moran model:

Assumptions:

Constant population size: N haploid adults.

Overlapping generations.

At rate 1 each individual gives birth to a single offspring.

Each birth is accompanied by the death of a single adult individual chosen
uniformly at random from the population (including the parent, but excluding the
offspring).

Two alleles A1 and A2.

Remark: An alternative version of the Moran model is sometimes studied in which
offspring are not permitted to replace their own parent.
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Two Classic Models Moran Model

Let X (t) denotes the number of copies of A1 in the population at time t. Then X (t)
only changes during reproductive events, according to the following rules:

parental deceased probability change in
genotype genotype X (t)

A1 A1 p2 0
A1 A2 p(1− p) +1
A2 A1 p(1− p) -1
A2 A2 (1− p)2 0

where p = X (t)/N is the frequency of A1.

Remark: Notice that X (t) is a birth-death process, i.e., the number of copies of A1 can
only increase or decrease by one at each jump.
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Two Classic Models Moran Model

(X (t) : t ≥ 0) is a continuous-time Markov chain, and the rate matrix can be found
by multiplying each transition probability by the total rate, N, at which reproductive
events occur:

Qk,k+1 = Np(1− p)

Qk,k−1 = Np(1− p)

Qk,k = −2Np(1− p)

Qk,j = 0 if j 6= k − 1, k, k + 1

As before, we are mainly interested in the frequency process, so we define the Moran
model (p(t) : t ≥ 0) by setting p(t) = X (t)/N. This process has the same rate matrix
as X (t) (only the set E changes).

Jay Taylor () Diffusion Processes in Population Genetics 2009 31 / 154



Two Classic Models Moran Model

(X (t) : t ≥ 0) is a continuous-time Markov chain, and the rate matrix can be found
by multiplying each transition probability by the total rate, N, at which reproductive
events occur:

Qk,k+1 = Np(1− p)

Qk,k−1 = Np(1− p)

Qk,k = −2Np(1− p)

Qk,j = 0 if j 6= k − 1, k, k + 1

As before, we are mainly interested in the frequency process, so we define the Moran
model (p(t) : t ≥ 0) by setting p(t) = X (t)/N. This process has the same rate matrix
as X (t) (only the set E changes).

Jay Taylor () Diffusion Processes in Population Genetics 2009 31 / 154



Two Classic Models Moran Model

For comparison with the Wright-Fisher model, let us calculate the expectation:

u(p, t) = Ep[f (p(t), t)].

First, using the Markov property and the fact that

Pp

n
p(δt) = p ± 1

N

o
= Np(1− p)δt + O((δt)2),

observe that:

u(p, t) = Ep

h
E
h
f (p(t), t)

˛̨̨
p(δt)

ii
= Ep

h
u(p(δt), t − δt)

i
(by the Markov property)

= Np(1− p)δt · u(p + 1/N, t − δt) +

Np(1− p)δt · u(p − 1/N, t − δt) +“
1− 2Np(1− p)δt

”
u(p, t − δt) + O((δt)2)
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Two Classic Models Moran Model

Next, if we expand the terms involving u in Taylor series, then we obtain:

u(p, t) =

Np(1− p)δt ·
h
u(p, t − δt) +

1

N
up(p, t − δt) +

1

2N2
upp(p, t − δt)

i
+

Np(1− p)δt ·
h
u(p, t − δt)− 1

N
up(p, t − δt) +

1

2N2
upp(p, t − δt)

i
+“

1− 2Np(1− p)δt
”
u(p, t − δt) + O(N−2) + O((δt)2)

= u(p, t − δt) + δt · 1

N
p(1− p)upp(p, t − δt) + O(N−2) + O((δt)2).

This can be rearranged to:

u(p, t)− u(p, t − δt)

δt
=

1

N
p(1− p)upp(p, t − δt) + O(N−2) + O(δt).
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Two Classic Models Moran Model

Then, letting δt → 0 gives:

∂tu(p, t) =
1

N
p(1− p)∂2

pu(p, t) + O(N−2).

Furthermore, if we define U(p, t) = u(p,Nt) and let N →∞, then:

∂tU(p, t) = p(1− p)∂2
pU(p, t).

Notice that:

The rate of change of Ep[f (p(t), t)] is of order N−1.

The quantity Ep[f (p(t), t)] changes slowly when p is close to 0 or 1.

The partial differential equation satisfied by U(p, t) under the Moran model is the
same as that derived for the Wright-Fisher model apart from a factor of 1/2. (The
Moran model evolves twice as fast as the Wright-Fisher model.)
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The partial differential equation satisfied by U(p, t) under the Moran model is the
same as that derived for the Wright-Fisher model apart from a factor of 1/2. (The
Moran model evolves twice as fast as the Wright-Fisher model.)
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Diffusion Approximations and Markov Processes Rationale

Diffusion Approximations: Rationale

Problem: The Wright-Fisher and Moran models are easy to understand, but explicit
calculations are usually difficult:

Exact calculations with the Wright-Fisher process often are impossible
because the process can jump between any two frequencies.

Explicit calculations can sometimes be carried out with the Moran model,
but the answers are often difficult to interpret.

Remedy: Accurate approximations can often be found by assuming that the population
size is very large and then neglecting terms of higher order in N−1.

Question: Why does this approach work?
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Diffusion Approximations and Markov Processes Rationale

The following figure shows a series of simulations of the Wright-Fisher model for 100
generations for N = 10 (blue), 100 (red), 1000 (orange), and 10, 000 (green).

Simulations of the Wright-Fisher process
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Notice that both the size of the fluctuations and the total change in p over 100
generations decrease as the population size is increased.
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Diffusion Approximations and Markov Processes Rationale

A different picture emerges if we plot each sample path against time measured in units
of N generations. Here the total rescaled time is t = 1.

Simulations of the Wright-Fisher process (with rescaled time)
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In this case, the typical jump sizes shrink as N increases, but the ‘roughness’ of the
paths increases. This suggests that the following limit should exist:

lim
N→∞

(pN(Nt) : t ≥ 0) = (p(t) : t ≥ 0),

where (p(t) : t ≥ 0) is a stochastic process with continuous paths.
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Diffusion Approximations and Markov Processes Generators

Characterization of Markov Processes

Suppose that X = (Xt : t ≥ 0) is a continuous-time Markov process in a metric space
E = (E , d). X can be characterized in several ways:

1.) Transition function:

The transition function P : [0,∞)× E × B(E)→ [0, 1] is defined by

P(t, x ,A) = Px{Xt ∈ A},

where A ⊂ E . Strictly speaking, we require A ∈ B(E), the sigma algebra of Borel
subsets of E .

Notice that for fixed t and x , P(t, x , dy) is a probability distribution on E :

P(t, x ,A) =

Z
A

P(t, x , dy).

Remark: A Markov process is uniquely determined by its transition function.
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Diffusion Approximations and Markov Processes Generators

Theorem: The transition function P(t, x , dy) of a Markov process X satisfies the
Chapman-Kolmogorov equation

P(t + s, x ,A) =

Z
E

P(s, y ,A)P(t, x , dy).

Proof: By the Markov property, we have:

P(t + s, x ,A) = Px{Xt+s ∈ A}
= Ex [P{Xt+s ∈ A|Xt}]

=

Z
E

P(s, y ,A)Px{Xt = dy} (using the Markov property)

=

Z
E

P(s, y ,A)P(t, x , dy). �

In general, it is difficult to identify the transition function explicitly, although transition
density functions sometimes have eigenfunction expansions.
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Diffusion Approximations and Markov Processes Generators

2. Transition semigroup:

Let C̄(E) denote the space of bounded continuous functions f : E → R. For each t ≥ 0,
we can define an operator Tt : C̄(E)→ C̄(E) by setting

Tt f (x) = Ex [f (Xt)] =

Z
E

f (y)P(t, x , dy)

where x ∈ E and f ∈ C̄(E).

Remarks:

Tt is called an operator because it maps functions to functions: Tt f ∈ C̄(E).

Notice that T0f (x) = Ex [f (X0)] = f (x) .

The collection of operators (Tt : t ≥ 0) satisfies the semigroup property:

Tt+s f (x) = TtTs f (x).

A Markov process is uniquely determined by its transition semigroup.

Usually the transition semigroup is not known explicitly.
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Diffusion Approximations and Markov Processes Generators

3. Infinitesimal Generator

The infinitesimal generator of a Markov process X is the operator G : C̄(E)→ C̄(E)
defined by

Gf (x) =
d

dt
Tt f (x)|t=0 = lim

t→0

Ex

ˆ
f (Xt)

˜
− f (x)

t
,

provided the limit exists for all x ∈ E and convergence is uniform over E .

Remarks:

The generator specifies the rate of change of the expected value of a function
evaluated along sample paths of X started at x .

The set of functions f for which Gf is defined is called the domain of G and is
denoted D(G).

A Markov process is uniquely determined by its generator.

The generator can often be found explicitly.
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Diffusion Approximations and Markov Processes Generators

Example: Suppose that X is a continuous-time Markov chain on a finite set
E = {e1, · · · , en} with rate matrix Q. Then, for any function f : E → R,

Gf (ei ) = lim
t→0

1

t

`
Ex

ˆ
f (Xt)

˜
− f (ei )

´

= lim
t→0

1

t

X
j

Pei {Xt = ej}
`
f (ej)− f (ei )

´
= lim

t→0

1

t

X
j 6=i

(qij t + o(t))
`
f (ej)− f (ei )

´
=

X
j 6=i

qij

`
f (ej)− f (ei )

´
.

Thus, for a continuous-time Markov chain, the generator is just a difference operator.
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Diffusion Approximations and Markov Processes Generators

Application: Generators and Time Changes

It is sometimes useful to consider a Markov process X run on a different time scale:

X̂ (t) ≡ X (λt),

where λ > 0 is constant. This is an example of a time change.

Suppose that G is the generator of X . Then the generator of the rescaled process is:

Ĝ f (x) = lim
t→0

1

t
Ex [f (X̂ (t))− f (x)]

= lim
t→0

1

t
Ex [f (X (λt))− f (x)]

= λ lim
t→0

1

λt
Ex [f (X (λt))− f (x)]

= λGf (x),

i.e., rescaling a Markov process corresponds to multiplying its generator by a constant.
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Diffusion Approximations and Markov Processes Generators

Application: Generators and Convergence of Markov Processes

Suppose that

E is a metric space;

for each N ≥ 1, XN is an E -valued Markov process with generator GN

X is an E -valued Markov process with generator G .

We can sometimes show that the sequence XN converges to X by showing that the
generators converge:

lim
N→∞

sup
x∈E
|GN f (x)− Gf (x)| = 0.

for any function f ∈ D(G).

Remark: In this case, the process X can be used as an approximation for XN when
N is large.
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Diffusion Approximations and Markov Processes Generators

Example: Diffusion Approximation for the Moran Model

Now let’s examine the generator of the Moran model pN(t):

GN f (p) = Np(1− p)
`
f (p + 1/N)− f (p)

´
+

Np(1− p)
`
f (p − 1/N)− f (p)

´
.

If N is large and f is smooth, then we can approximate GN f by the first few terms
in its Taylor series expansion:

GN f (p) = Np(1− p)

„
1

N
f ′(p) +

1

2N2
f ′′(p) + O(N−3)

«
+

Np(1− p)

„
− 1

N
f ′(p) +

1

2N2
f ′′(p) + O(N−3)

«
=

1

N
p(1− p)f ′′(p) + O(N−2).
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Diffusion Approximations and Markov Processes Generators

This limit vanishes as N tends to infinity. However, if we consider the rescaled Moran
model, p̂N(t) = pN(Nt), then

lim
N→∞

ĜN f (p) = lim
N→∞

NGN f (p)

= p(1− p)f ′′(p),

and the convergence is uniform in p ∈ [0, 1] if f is smooth.

These calculations suggest that the rescaled Moran models (pN(N·)) converge to a
Markov process (p(·)) with generator

Gf (p) = p(1− p)f ′′(p).

Such a process exists and is called a Wright-Fisher diffusion.
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Diffusion Approximations and Markov Processes Diffusion Processes

One-dimensional Diffusion Processes

Informal Definition: A Markov process X = (X (t) : t ≥ 0) is a one-dimensional
diffusion process on the set E = [l , r ] ⊂ R if:

X has continuous sample paths with values in E ;

The infinitesimal generator of X has the form

Gf (x) = lim
t→0+

Ex [f (X (t)]− f (x)

t

=
1

2
a(x)f ′′(x) + b(x)f ′(x)

for every f ∈ C2
c (R).

Remark: The infinitesimal variance a(x) must be non-negative.
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Diffusion Approximations and Markov Processes Diffusion Processes

Interpretation of Gf (x) = 1
2
a(x)f ′′(x) + b(x)f ′(x)

The infinitesimal drift b(x) determines the expected change in a small increment
of X starting at x :

Ex [X (t)− x ] = b(x)t + o(t)

The infinitesimal variance a(x) determines the variance of a small increment of X
starting at x :

Ex [(X (t)− x)2] = a(x)t + o(t)

Remark: There is an unfortunate overlap of terminology. The infinitesimal drift of a
diffusion describes its expected change. In contrast, genetic drift refers to stochastic
fluctuations in allele frequencies that are described by the infinitesimal variance
p(1− p) of the Wright-Fisher diffusion.
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Diffusion Approximations and Markov Processes Diffusion Processes

Brownian motion is the canonical example of a diffusion process.

Recall that a real-valued stochastic process B = (Bt : t ≥ 0) is said to be a
one-dimensional Brownian motion if:

Bt+s − Bt is independent of (Bu : u ∈ [0, t]).

Bt+s − Bt is normally distributed with mean 0 and variance s.

B has continuous sample paths.

Observe that:

Gf (x) = lim
t→0

1

t

“
Ex [f (Bt)]− f (x)

”
= lim

t→0

1

t
Ex

»
f ′(x)(Bt − x) +

1

2
f ′′(x)(Bt − x)2 +

1

6
f ′′′(x)(Bt − x)3

+O((Bt − x))4
i

=
1

2
f ′′(x).

Brownian motion has infinitesimal variance a(x) = 1 and infinitesimal drift b(x) = 0.
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Diffusion Approximations and Markov Processes Diffusion Processes

Stochastic Differential Equations

Suppose that X is a one-dimensional diffusion with infinitesimal variance a(x) and
infinitesimal drift b(x). Then X is a solution to the following stochastic differential
equation:

dXt = b(Xt)dt +
p

a(Xt)dBt ,

where dBt is the stochastic differential of a Brownian motion Bt .

Thus, the increments of X over short time intervals are approximately equal to:

Xt+δt ≈ Xt + b(Xt)δt +
p

a(Xt) (Bt+δt − Bt)
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Diffusion Approximations and Markov Processes Diffusion Processes

Multidimensional Diffusion Processes

Informal Definition: A Markov process X = (X (t) : t ≥ 0) is a multi-dimensional
diffusion process on a set E ⊂ Rn if:

X has continuous sample paths with values in E ;

The infinitesimal generator of X has the form

Gf (x) =
1

2

nX
i,j=1

aij(x)∂ij f (x) +
nX

i=1

bi (x)∂i f (x)

Remark: The matrix a(x) = (aij(x)) is called the infinitesimal variance-covariance
matrix of X . This must be non-negative definite for every x ∈ E .
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Diffusion Approximations and Markov Processes Diffusion Processes

Diffusion Approximation for Discrete-time Markov Chains

The figures that we saw earlier suggest that the Wright-Fisher processes, pN(n), can
also be approximated by a diffusion process when N is large. However, this cannot be
justified using the same method that we applied to the Moran model.

discrete-time processes do not have generators;

discrete-time processes are only defined at integer times, whereas diffusion
processes are defined at all times.

We can avoid the second problem by considering the piecewise-constant processes:

p̂N(t) = pN(bNtc), t ≥ 0

where bxc denotes the greatest integer less than x . However, these modified processes
are not Markov processes.
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Diffusion Approximations and Markov Processes Diffusion Processes

Theorem: Suppose that XN = (XN(n) : n ≥ 0) is a sequence of discrete-time
Markov chains and let εN be a sequence of positive numbers tending to 0
such that the following limits exist:

lim
N→∞

ε−1
N Ex [XN(1)− x ] = b(x)

lim
N→∞

ε−1
N Ex [

`
XN(1)− x)2] = a(x)

lim
N→∞

ε−1
N Ex [

`
XN(1)− x)n] = 0 if n ≥ 3.

Then, the interpolated processes (XN(bε−1
N tc) : t ≥ 0) converge to the diffusion

process X with generator

Gf (x) =
1

2
a(x)f ′′(x) + b(x)f ′(x).
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Diffusion Approximations and Markov Processes Diffusion Processes

Example: Diffusion approximation for the Wright-Fisher process

Let pN = (pN(n) : n ≥ 0) be the Wright-Fisher process and set εN = N−1. Then,

lim
N→∞

NEp[pN(1)− p] = 0

lim
N→∞

NEp[
`
pN(1)− p)2] = p(1− p)

lim
N→∞

NEp[
`
pN(1)− p)n] = 0 if n ≥ 3.

Using the theorem on the previous slide, we know that the interpolated processes
(pN(bNtc) : t ≥ 0) converge to the diffusion process with generator

Gf (p) =
1

2
p(1− p)f ′′(p).
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Diffusion Approximations and Markov Processes Diffusion Processes

Comparison of the Wright-Fisher and Moran models:

Diffusion approximations:

Wright-Fisher: GWF f (p) = 1
2
p(1− p)f ′′(p)

Moran: GM f (p) = p(1− p)f ′′(p).

Since GM f (p) = 2GWF f (p), we know that the diffusion approximation, pM , for the
Moran model is a time change of the diffusion approximation, pWF , for the
Wright-Fisher model:

pM(t) = pWF (2t).

Conclusion: Apart from a rescaling of time, the Moran model and the Wright-Fisher
model are very similar when N is large.
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Diffusion Approximations and Markov Processes Convergence of Stochastic Processes

Convergence of Stochastic Processes

Question: What does it mean for a sequence of Markov processes (XN) to converge to
a Markov process X?

A negative answer: In general, this does not mean that the actual values of these
processes converge, i.e., the identity,

lim
N→∞

XN(t) = X (t),

usually is not even well-defined. This is because the processes XN and X are typically
constructed on separate probability spaces.

Rather, when we discuss convergence of Markov processes, we usually have convergence
of certain probability distributions in mind.
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Diffusion Approximations and Markov Processes Convergence of Stochastic Processes

Weak Convergence of Probability Distributions

Definition: Let E = (E , d) be a metric space and let (µN) be a sequence of probability
distributions on E . We say that µN converges weakly to a distribution µ (also on E) if
for every bounded continuous function f : E → R,

lim
N→∞

Z
E

f (x)µN(dx) =

Z
E

f (x)µ(dx).

Example: Let E = R, µN = δ1/N and µ = δ0. (Here δx is the probability distribution
that assigns all of its mass to the point x .) Then µN converges weakly to µ. Indeed,
if f is any continuous function on R, then

lim
N→∞

Z
E

f (x)µN(dx) = lim
N→∞

f (1/N) = f (0)

=

Z
E

f (x)µ(dx).
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Diffusion Approximations and Markov Processes Convergence of Stochastic Processes

Convergence in Distribution

Definition: We say that a sequence of random variables, (XN), converges in distribution
to a random variable X if the probability distributions µN of the XN converge weakly
to the probability distribution µ of X . This is equivalent to the condition:

lim
N→∞

E[f (XN)] = E[f (X )],

for every bounded, continuous function f : E → R. In this case, we write that

XN d→ X

as N tends to infinity, the d over the arrow standing for ‘distribution’.
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Diffusion Approximations and Markov Processes Convergence of Stochastic Processes

Convergence of Markov Processes

Definition: Suppose that (XN) is a sequence of E -valued continuous-time Markov
processes and let X be another E -valued Markov process. We say that the
finite-dimensional distributions (FDD’s) of XN converge weakly to those of X if for
every positive integer N and every finite set 0 ≤ t1 < t2 < · · · < tn,

(XN(t1), · · · ,XN(tn))
d→ (X (t1), · · · ,X (tn)),

as N tends to infinity.

Remarks:

Convergence of generators usually implies convergence of FDD’s.

Convergence to a diffusion approximation usually implies convergence of FDD’s.

There are also stronger forms of convergence involving entire sample paths.
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Applications of Generators Forward and Backward Equations

Applications of Generators

Let X = (Xt : t ≥ 0) be a Markov process on E with semigroup (Tt : t ≥ 0) and
generator G , and suppose that f : E → R is continuous. If we define the function,

u(t, x) = Tt f (x) = Ex

ˆ
f (Xt)

˜
,

then

∂tu(t, x) = lim
s→0

1

s
[Tt+s f (x)− Tt f (x)]

= lim
s→0

1

s
[Ts (Tt f (x))− Tt f (x)] (by the semigroup property)

= G (Tt f ) (x)

= Gu(t, x).

Key equation: ∂tTt f (x) = GTt f (x).
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Applications of Generators Forward and Backward Equations

Notice that if E ⊂ R and if X has a transition density p(t, x , y), then

u(t, x) =

Z
E

f (y)p(t, x , y)dy .

Thus, provided we can interchange the integral with both ∂t and G , thenZ
E

f (y)∂tp(t, x , y)dy =

Z
E

f (y)Gp(t, x , y)dy .

However, since this identity holds for all continuous functions f , it follows that the
transition density satisfies the following initial value problem:

∂tp(t, x , y) = Gp(t, x , y)

p(0, x , y) = δx(dy),

where G is understood to act on x on the right-hand side and the identity
p(0, x , y) = δx(dy) means:

lim
t→0

Z
E

f (y)p(t, x , y)dy = f (x).
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Applications of Generators Forward and Backward Equations

Kolmogorov Backward Equation

In the special case where X is a one-dimensional diffusion, the transition density
p(t, x , y) satisfies the Kolmogorov backward equation:

∂tp(t, x , y) =
1

2
a(x)∂xxp(t, x , y) + b(x)∂xp(t, x , y)

p(0, x , y) = δx(dy),

where a(x) and b(x) are the infinitesimal variance and drift of X .

Remark: This is called the backward equation because the derivatives are taken with
respect to the initial value of the process, i.e., looking backwards in time.
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Applications of Generators Forward and Backward Equations

Kolmogorov Forward Equation

There is also an equation involving derivatives of the future value of the process.
Suppose that X is a diffusion process on E = [l , r ] with transition density p(t, x , y).

Then, the Chapman-Kolmogorov equation implies that:

p(t + s, x , y) =

Z r

l

p(t, x , z)p(s, z , y)dz .

It follows that

∂tp(t + s, x , y) = ∂sp(t + s, x , y)

=

Z r

l

p(t, x , z)∂sp(s, z , y)dz

=

Z r

l

p(t, x , z)

„
1

2
a(z)pzz(s, z , y) + b(z)pz(s, z , y)

«
dz .
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Applications of Generators Forward and Backward Equations

Since our aim is to derive an equation involving derivatives with respect to the future
value of the process, we use integration-by-parts. The first integration gives

−
Z r

l

1

2
(a(z)p(t, x , z))′p′(s, z , y)dz

−
Z r

l

(b(z)p(t, x , z))′p(s, z , y)dz

+

„
1

2
a(z)p(t, x , z)p′(s, z , y) + b(z)p(t, x , z)p(s, z , y)

«
|rl .

The second integration gives:Z r

l

p(s, z , y)

»
1

2
(a(z)p(t, x , z))′′ − (b(z)p(t, x , z))′

–
dz

+

„
1

2
a(z)p(t, x , z)p′(s, z , y) + b(z)p(t, x , z)p(s, z , y)

«
|rl

−1

2
(a(z)p(t, x , z))′p(s, z , y)|rl
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Applications of Generators Forward and Backward Equations

If we let s → 0, then p(s, z , y)→ δz(y) and so all three boundary terms vanish if
z 6= l , r . This leads to the Kolmogorov forward equation for p(t, x , y):

∂tp(t, x , y) =
1

2
∂yy

`
a(y)p(t, x , y)

´
− ∂y

`
b(y)p(t, x , y)

´
p(0, x , y) = δx(dy)

In general, the forward equation will only have a solution if the variance and drift
coefficients, a(y) and b(y), are smooth functions.
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Applications of Generators Forward and Backward Equations

There also are multivariate versions of the forward and backward equations. If X is an
n-dimensional diffusion with infinitesimal variance-covariance matrix a(x) and
infinitesimal drift b(x), then the transition density satisfies:

∂tp(t, x , y) =
1

2

nX
i,j=1

aij(x)∂xi xj p(t, x , y) +
nX

i=1

bi (x)∂xi p(t, x , y)

p(0, x , y) = δx(dy) (backward equation)

and

∂tp(t, x , y) =
1

2

nX
i,j=1

∂yi yj

“
aij(y)p(t, x , y)

”
−

nX
i=1

∂yi

“
bi (y)p(t, x , y)

”
p(0, x , y) = δx(dy) (forward equation).
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Applications of Generators Stationary Distributions and Generators

Stationary Distributions

Definition: Let X = (Xt : t ≥ 0) be a Markov process on E . A stationary distribution
for X is a probability distribution π on E such that if X0 has distribution π, then Xt

has distribution π for all t ≥ 0.

This property can also be expressed in terms of expectations. If f is continuous and π is
a stationary distribution for X , then

Eπ
ˆ
f (X0)

˜
= Eπ

ˆ
f (Xt)

˜
, i.e.Z

E

f (x)π(dx) =

Z
E

Ex

ˆ
f (Xt)

˜
π(dx)

holds for all t ≥ 0.
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Applications of Generators Stationary Distributions and Generators

We can rewrite this equation in terms of the semigroupZ
E

f (x)π(dx) =

Z
E

Tt f (x)π(dx).

Thus, the right-hand side does not depend on t, and so if we can interchange
differentiation and integration, then

0 = ∂t

Z
E

Tt f (x)π(dx) =

Z
E

∂tTt f (x)π(dx) =

Z
E

GTt f (x)π(dx),

using the identity ∂tTt f = GTt f .
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Applications of Generators Stationary Distributions and Generators

In particular, taking t = 0 gives the identityZ
E

Gf (x)π(dx) = 0,

for any function f ∈ D(G).

This equation can sometimes be used to recursively calculate the moments of the
stationary distribution π.
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Applications of Generators Stationary Distributions and Generators

Example: Moran model with mutation

Assumptions:

reproduction follows the Moran model, plus

each A1 individual mutates to A2 at rate µ2

each A2 individual mutates to A1 at rate µ1

mutation occurs independently of reproduction

If p(t) denotes the frequency of A1 at time t, then (p(t) : t > 0) is a continuous time
Markov chain with values in KN = {0, 1/N, · · · , 1} and generator

Gφ(p) = N
`
p(1− p) + (1− p)µ1

´ˆ
φ(p + 1/N)− φ(p)

˜
+N
`
p(1− p) + pµ2

´ˆ
φ(p − 1/N)− φ(p)

˜
.
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Applications of Generators Stationary Distributions and Generators

Although the stationary distribution π can be determined explicitly, it is easier to
calculate the moments.

For example, to calculate the mean frequency of A1 in a stationary population, let
φ(p) = p and observe that

Gφ(p) = (1− p)µ1 − pµ2 = µ1 − (µ1 + µ2)p.

Then,

0 =

Z
KN

Gφ(p)π(dp) = µ1 − (µ1 + µ2)

Z
KN

pπ(dp),

and so

p̄ ≡
Z

KN

pπ(dp) =
µ1

µ1 + µ2

is the mean frequency of A1.
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Applications of Generators Stationary Distributions and Generators

We would also like to know how dispersed the stationary distribution is about its mean.
To this end, let φ(p) = p(1− p) and calculate

Gφ(p) = −2
`
µ1 + µ2 + 1/N

´
p(1− p) + µ1

+(µ2 − µ1)p − 1

N

`
µ1 − (µ1 + µ2)p

´
.

Consequently,

0 =

Z
KN

Gφ(p)π(dp)

= −2
`
µ1 + µ2 + 1/N

´ Z
KN

p(1− p)π(dp) +

Z
KN

`
µ1 + (µ2 − µ1)p

´
π(dp)

− 1

N

Z
KN

`
µ1 − (µ1 + µ2)p

´
π(dp).
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Applications of Generators Stationary Distributions and Generators

Since p̄ = µ1/(µ1 + µ2), we find:

H̄ ≡
Z

KN

2p(1− p)π(dp)

= 2

 
µ1 + (µ2 − µ1)p̄

2
`
µ1 + µ2 + 1/N

´!

=
2µ1µ2

(µ1 + µ2)(µ1 + µ2 + 1/N)
.

Notice that H̄ ≈ 2p̄(1− p̄) if Nµ1,Nµ2 � 1. In this case, π(dp) is concentrated near p̄,
i.e., the process makes only small fluctuations around p̄.
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Applications of Generators Stationary Distributions of Diffusion Processes

Stationary Distributions of Diffusion Processes

Let X = (Xt : t ≥ 0) be a diffusion process on [l , r ] with infinitesimal variance a(x) and
infinitesimal drift b(x), and suppose that:

X has transition density p(t, x , y).

X has a unique stationary distribution π(x)dx .

For every x ∈ [l , r ],
lim

t→∞
p(t, x , y) = π(y).

Remark: The third property is an ergodic condition. It says that if we wait long
enough, the distribution of the process will approach the stationary distribution.
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Applications of Generators Stationary Distributions of Diffusion Processes

Under these conditions, we can use the forward equation to calculate:

0 = ∂tπ(y)

= ∂t lim
t→∞

p(t, x , y)

= lim
t→∞

∂tp(t, x , y) (if we can interchange the limit and differentiation)

= lim
t→∞

“1

2
∂yy (a(y)p(t, x , y))− ∂y (b(y)p(t, x , y))

”
=

1

2
∂yy (a(y)π(y))− ∂y (b(y)π(y))

(again assuming that we can interchange the limit and differentiation).

In other words, π(x) is a stationary solution to the forward equation

1

2

`
a(x)π(x)

´′′ − `b(x)π(x)
´′

= 0.
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Applications of Generators Stationary Distributions of Diffusion Processes

This can be integrated to give

1

2

`
a(x)π(x)

´′ − `b(x)π(x)
´

= C ,

where C is a constant.

It can be shown that π(x) is integrable (
R
π(x)dx <∞) only if C = 0 (zero flux

condition).

Consequently, π(x) satisfies the first-order linear equation

1

2
a(x)π′(x) +

„
1

2
a′(x)− b(x)

«
π(x) = 0,

which can be rewritten as
π′(x)

π(x)
=

2b(x)

a(x)
− a′(x)

a(x)
.
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Applications of Generators Stationary Distributions of Diffusion Processes

Both sides of this equation can be integrated to obtain

ln(π(x)) = 2

Z x

c

b(y)

a(y)
dy − ln(a(x)) + C ,

where C is a (new) constant of integration and c is an arbitrary point in (l , r).

Solving for π(x) gives:

π(x) =
1

Ca(x)
exp

„
2

Z x

c

b(y)

a(y)
dy

«
,

where the normalizing constant C <∞ must be chosen (if possible) so thatZ r

l

π(x)dx = 1.
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Applications of Generators Stationary Distributions of Diffusion Processes

Example: Wright-Fisher Diffusion with Mutation

Consider the Moran model with mutation that we examined earlier and suppose that the
mutation rates are µi = 2θi/N. Then the generator of this process (pN(t) : t ≥ 0) is

GNφ(p) =
`
Np(1− p) + 2θ1(1− p)

´ˆ
φ(p + 1/N)− φ(p)

˜
+
`
Np(1− p) + 2θ2p

´ˆ
φ(p − 1/N)− φ(p)

˜
.

A simple Taylor series expansion shows that if φ(p) is smooth, then

lim
N→∞

NGNφ(p) = Gφ(p)

= p(1− p)φ′′(p) +
`
2θ1(1− p)− 2θ2p

´
φ′(p).
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Applications of Generators Stationary Distributions of Diffusion Processes

Consequently, the rescaled processes converge to a diffusion process which is an example
of a Wright-Fisher diffusion with mutation:

(pN(Nt) : t ≥ 0)
d→ (p(t) : t ≥ 0).

Notice that the infinitesimal variance and drift of this diffusion are

a(p) = 2p(1− p)

b(p) = 2θ1(1− p)− 2θ2p,

i.e., incorporating mutation changes the infinitesimal drift but not the infinitesimal
variance.
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Applications of Generators Stationary Distributions of Diffusion Processes

The density of the stationary distribution of this process can be found by substituting
a(p) and b(p) into the formula that we derived earlier:

π(p) =
1

C

1

2p(1− p)
exp

(
2

Z p

c

`
2θ1(1− q)− 2θ2q

´
2q(1− q)

dq

)

=
1

C
p2θ1−1(1− p)2θ2−1.

In passing from the first to the second line, we have absorbed the 2 and the terms
involving c into the normalizing constant.

To complete the calculation, notice that

C =

Z 1

0

p2θ1−1(1− p)2θ2−1dp = β(2θ1, 2θ2) <∞,

is just the Beta function with arguments 2θ1 and 2θ2. This is finite as long as θ1 and θ2

are both positive.
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Applications of Generators Stationary Distributions of Diffusion Processes

Summary: The stationary distribution of the Wright-Fisher diffusion with mutation is
just the Beta distribution with parameters 2θ1 and 2θ2, which has density

π(p) =
1

B(2θ1, 2θ2)
p2θ1−1(1− p)2θ2−1

=
1

B(2Nµ1, 2Nµ2)
p2Nµ1−1(1− p)2Nµ2−1.

With this, we can directly calculate the mean p̄ and heterozygosity H̄:

p̄ =

Z 1

0

pπ(p)dp =
µ1

µ1 + µ2

H̄ =

Z 1

0

2p(1− p)π(p)dp =
2µ1µ2

(µ1 + µ2)(µ1 + µ2 + 1/2N)
.
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Applications of Generators Stationary Distributions of Diffusion Processes

The stationary distribution reflects the competing effects of genetic drift, which
eliminates variation, and mutation, which generates variation.

Stationary Density of the Wright-Fisher Diffusion
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When Nµ1,Nµ2 > 1, mutation dominates drift and the stationary distribution is
peaked about its mean (both alleles are common).

When Nµ1,Nµ2 < 1, drift dominates mutation and the stationary distribution is
bimodal, with peaks at the boundaries (one allele is common and one rare).
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Selection and Genetic Drift Wright-Fisher Model with Selection

Fixation and Stationary Distributions

If there is no mutation (θ1 = θ2 = 0), then b(p) = 0 and

π(p) =
1

C

1

2p(1− p)
.

Since Z 1

0

1

p(1− p)
dp =∞,

it follows that π(p) is not the density of a stationary distribution.

Rather, this process is certain to absorb at one of the boundaries in finite time. In this
case, the distributions,

δ0(dp) and δ1(dp),

are both stationary, i.e., this process does not have a unique stationary distribution.
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Selection and Genetic Drift Wright-Fisher Model with Selection

Selection and Genetic Drift

Wright-Fisher model with selection:

Consider a population containing N haploid individuals and two alleles, A and a.
Suppose that each adult in generation t + 1 ‘chooses’ its parent in generation t
(independently and with replacement) with the following probabilities:

A-type parent:
p(1 + s)

p(1 + s) + 1− p

a-type parent:
1− p

p(1 + s) + 1− p
,

where p is the frequency of A-type adults alive in generation t.

s is called the selection coefficient of A and quantifies the selective advantage (s > 0)
or disadvantage (s < 0) of this allele relative to a. If s = 0, then the two alleles are said
to be neutral. If s > 0, then A is said to be a beneficial allele, while if s < 0, then A is
said to be deleterious.
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Selection and Genetic Drift Wright-Fisher Model with Selection

To derive a diffusion approximation for this process, we must assume that the selection
coefficient has the same order of magnitude as genetic drift, i.e., we set

s = σ/N.

In this case, using the moments of the binomial distribution, it is easy to show that:

NEp

ˆ
pN(1)− p

˜
= σp(1− p) + O(N−1)

NEp

ˆ
(pN(1)− p)2˜ = p(1− p) + O(N−1)

NEp

ˆ
(pN(1)− p)n˜ = O(N−1) if n ≥ 3 .

These calculations show that the processes (pN(bNtc) : t ≥ 0) have a diffusion
approximation with generator

Gf (p) =
1

2
p(1− p)f ′′(p) + σp(1− p)f ′(p).

This process is called a Wright-Fisher diffusion with selection.
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Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Remarks:

The diffusion approximation is accurate when selection is weak: s ∼ 1/N.

Selection does not change the infinitesimal variance of the Wright-Fisher diffusion.

Selection does change the infinitesimal drift from 0 in the neutral diffusion to
b(p) = σp(1− p).

The frequency of a beneficial allele will tend to increase, while that of a deleterious
allele will tend to decrease.

However, genetic drift can cause the frequency of a beneficial allele to decrease
and the frequency of a deleterious allele to increase.

Selection has little effect on the population when A is either very common or very
rare.

Jay Taylor () Diffusion Processes in Population Genetics 2009 86 / 154



Selection and Genetic Drift Wright-Fisher Model with Selection

Recall that we say that an allele A is fixed in the population if all other alleles are lost.
In a population initially containing two alleles, the time to fixation can be written as

τ = inf
t≥0
{p(t) = 0 or 1},

and it can be shown that
Pp{τ <∞} = 1.

In other words, with probability one, one of the two alleles is certain to be fixed in the
population at some finite (but random) time.

Remark: τ is certain to be finite for a Wright-Fisher diffusion as long as there is no
mutation (as is the case in our current model). If mutation is incorporated into the
model, then fixation can only occur if the mutation rates are not too large.
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Selection and Genetic Drift Wright-Fisher Model with Selection

Because τ is almost surely finite, we can define the fixation probability of allele A to be

u(p) = Pp {p(τ) = 1} .

Of course, the fixation probability of an allele depends on both its initial frequency and
its selection coefficient. Intuitively, we would expect that:

u(p) is an increasing function of p: the more common an allele is, the more likely
it is to be fixed in the population.

u(p) is an increasing function of σ: beneficial mutations are more likely to be fixed
than deleterious mutations.

Our goal is to find an explicit formula for u(p) which illustrates the relationship between
the selection coefficient, the initial frequency, and the probability that A is ultimately
fixed in the population.
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Selection and Genetic Drift Hitting Probabilities

Hitting Probabilities

Suppose that X = (X (t) : t ≥ 0) is a Markov process in [l , r ] ⊂ R, with generator G ,
and define

τ = inf
t≥0
{X (t) = l or r},

i.e., τ is the first time that the process hits l or r .

We will make the following three assumptions about X :

τ is almost surely finite: Px{τ <∞} = 1.

At time τ , either X (τ) = l or X (τ) = r .

l and r are both absorbing states for X .

Remark: The second assumption holds whenever the sample paths of X are
right-continuous.
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Selection and Genetic Drift Hitting Probabilities

When these assumptions are satisfied, we can ask how the probability that the process
X hits r rather than l depends on its initial value:

u(x) = Px{X (τ) = r}.

Our aim is to derive an equation for u(x) involving the generator of X . We first observe
that

u(x) = Px{X (τ) = r}
= Px{X (τ + t) = r} (r is an absorbing state)

= Ex

ˆ
P{X (τ + t) = r |X (t)}

˜
=

Z
E

u(y)Px{X (t) ∈ dy} (by the Markov property)

= Ex

ˆ
u(X (t))

˜
.
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Selection and Genetic Drift Hitting Probabilities

Next, we can use the definition of the generator to calculate

Gu(x) = lim
t↓0

1

t

`
Ex

ˆ
u(X (t))

˜
− u(x)

´
= 0,

since u(x) = Ex

ˆ
u(X (t))

˜
for every t ≥ 0.

In addition, we know that
u(l) = 0 and u(r) = 1.

This is true because if X starts at l , then it never hits r , while if X starts at r , then it
certainly hits r .

Key Result: The hitting probability u(x) of the process X can be found by solving the
boundary value problem:

Gu(x) ≡ 0, x ∈ [l , r ]

u(l) = 0, u(r) = 1.
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Selection and Genetic Drift Hitting Probabilities

Hitting Probabilities for Diffusions

Suppose that X is a diffusion process on [l , r ] with generator

Gf (x) =
1

2
a(x)f ′′(x) + b(x)f ′(x).

Here we will stipulate that X absorbs at l or r , if necessary by stopping the sample
paths of X whenever they hit l or r . (Such a process is called a stopped process
and is still a Markov process.)

We know that the hitting probability u(x) solves the equation

Gu(x) =
1

2
a(x)u′′(x) + b(x)u′(x) = 0,

subject to the boundary conditions u(l) = 0 and u(r) = 1.
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Selection and Genetic Drift Hitting Probabilities

This equation can be rearranged to

u′′(x)

u′(x)
= −2

b(x)

a(x)
,

which can be integrated to give

ln(u′(x)) = −2

Z x

c

b(y)

a(y)
dy + C1,

where C1 is a constant of integration and c is an arbitrary point in (l , r).

Rearranging and integrating again gives

u(x) = C2 + C1

Z x

c

exp

„Z y

c

−2b(z)

a(z)
dz

«
dy ,

where C2 is a second constant of integration.
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Selection and Genetic Drift Hitting Probabilities

There are two boundary conditions to be satisfied, and these can be met by choosing
suitable values for the constants C1 and C2. This shows that the probability that the
diffusion hits r before l is:

u(x) = Px{X (τ) = r} =

R x

l
exp

“
−2
R y

c
b(z)
a(z)

dz
”

dyR r

l
exp

“
−2
R y

c
b(z)
a(z)

dz
”

dy
.

Likewise, the probability that the diffusion hits l before r is simply 1− u(x) which is
equal to:

1− u(x) = Px{X (τ) = l} =

R r

x
exp

“
−2
R y

c
b(z)
a(z)

dz
”

dyR r

l
exp

“
−2
R y

c
b(z)
a(z)

dz
”

dy
.
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Selection and Genetic Drift Fixation Probabilities of Selected Alleles

Example: Recall that the diffusion approximation for the Wright-Fisher model with
selection has generator

Gf (p) =
1

2
p(1− p)f ′′(p) + σp(1− p)f ′(p).

To apply the results on the preceding slide, note that a(p) = p(1− p) and
b(p) = σp(1− p).

Selected alleles: If σ = Ns 6= 0, then the fixation probability of an allele A with initial
frequency p is:

u(p) =
1− e−2σp

1− e−2σ
=

1− e−2Nsp

1− e−2Ns
.

Neutral alleles: If A and a are neutral alleles (σ = 0), then the fixation probability is
equal to the initial frequency:

u(p) = p.
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Selection and Genetic Drift Fixation Probabilities of Selected Alleles

Usually we are interested in the fixation probability of a new mutation. In this case, the
initial frequency of A is p = 1/N and we can calculate

u

„
1

N

«
=

1− e−2s

1− e−2Ns
(s 6= 0).

This function is plotted below as a function of the population size N.

Fixation Probabilities of New Mutants
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Selection and Genetic Drift Fixation Probabilities of Selected Alleles

Some specific cases.

Deleterious alleles: A is deleterious if s = −|s| < 0. Suppose that N|s| � 1 and
|s| � 1. Then,

u

„
1

N

«
=

e2|s| − 1

e2N|s| − 1
≈ 2|s|e−2N|s|,

and so the fixation probability of a deleterious allele is exponentially small and decreases
as N|s| increases.

Intuition:

Deleterious alleles can become fixed in finite populations through chance increases
in their frequency caused by genetic drift.

Many more such random events must occur for a deleterious allele to be fixed in a
large population than in a small population.
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Selection and Genetic Drift Fixation Probabilities of Selected Alleles

Beneficial alleles: A is beneficial if s > 0. Suppose that Ns � 1 and s � 1. Then,

u

„
1

N

«
=

1− e−2s

1− e−2Ns
≈ 2s,

and thus the fixation probability of a beneficial allele is approximately equal to twice the
selection coefficient. In particular, this probability is approximately independent of the
population size as long as s � 1/N.

Nearly neutral alleles: A is nearly neutral if |Ns| � 1. In this case,

u

„
1

N

«
≈ 1

N
+ s ≈ 1

N
,

and so the fixation probability of a nearly neutral allele is approximately equal to the
reciprocal of the population size. (This relation is exact for neutral alleles: s = 0.)
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Selection and Genetic Drift Fixation Probabilities of Selected Alleles

We can draw the following main conclusions:

Most new mutations are lost from a population, even if they are beneficial.

Mutations which have selection coefficients that are less than the reciprocal of the
population size (|s| < N−1) behave like neutral mutations.

Deleterious mutations are much more likely to be fixed in smaller populations.

Mean fitness can actually decrease in finite populations due to fixation of
deleterious mutations.

Selection is more effective in larger populations.

Fitness differences that are too small to measure in the field or the lab may still
play an important role in evolution if |s| ≥ 1/N.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

Substitution Rates

The substitution rate is the rate at which new mutations are fixed in a population.

Substitution rates depend on population size, mutation and selection.

Divergence between populations or species occurs when different mutations are
fixed in these populations.

Thus, substitution rates can sometimes be estimated from divergence.

Even when selection cannot be observed directly, it can sometimes be inferred
from the effect that it has on divergence.

Substitution rates are difficult to calculate exactly. However, we can find a good
approximation if we assume that the mutation rate is low enough that each new
mutation is likely to be lost or fixed before another mutation enters the population.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

Under this assumption, we can approximate the substitution rate (per generation) by
the expression

ρ ≈ Nµ · u
„

1

N

«
,

where Nµ is the expected number of new mutations per generation, while u(1/N)
is the probability that any one of these is fixed in the population. This is accurate when
Nµ� 1.

Neutral substitution rate: If all mutations are neutral, then

ρ = Nµ · 1

N
= µ,

and so the neutral substitution rate is simply equal to the mutation rate. In particular,
the neutral substitution rate does not depend on the population size.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

Beneficial substitution rate: If all mutations are beneficial, with selection coefficient
s � 1/N, then

ρ ≈ 2Nµs,

and so the beneficial substitution rate is greater than the mutation rate and increases
with population size.

Deleterious substitution rate: If all mutations are deleterious, with selection coefficient
s = −|s| � −1/N, then

ρ ≈ 2Nµ|s|e−2N|s|,

and so the deleterious substitution rate is less than the mutation rate and decreases with
population size.

Important observation: The substitution rate at a locus under selection is usually
different from the mutation rate.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

Molecular Evolution: Mutation, genetic drift and selection can all contribute to the
genetic differences that are observed between species, and one of the central aims of
population genetics is to assess the relative importance of these different processes.

The answer to this question depends on the kind of substitution considered:

(i) A replacement substitution is one that leads to a change in an amino acid in a
protein.

(ii) A silent substitution is one that changes only the DNA sequence.

Silent substitutions can occur in several kinds of sequence:

intergenic regions

pseudogenes (non-functional genes)

introns (non-coding regions within eukaryotic genes)

synonymous sites within genes (the genetic code is degenerate)

About 98.5% of the human genome is non-coding.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

Several observations suggest that most replacement mutations are deleterious, while
most silent mutations are nearly neutral.

The silent substitution rate is usually greater than the replacement substitution
rate.

Silent polymorphism within populations is usually greater than replacement
polymorphism.

The silent substitution rate per year is greater in species with shorter generation
times, whereas the rate of replacement substitutions is only weakly correlated with
generation length.

Important Caveat: Some non-coding sequences are known to be functional and can be
conserved between species. For example, gene expression is often regulated by sequences
outside of genes.
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Selection and Genetic Drift Substitution Rates and Molecular Evolution

The following plot shows synonymous and nonsynonymous substitution rates estimated
from comparisons of human and rodent genes (Li (1997), pp. 180-181). In every case
the nonsynonymous substitution rate is less than the synonymous substitution rate.
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The average nonsynonymous and synonymous substitution rates in these genes are:

Nonsyn: 0.74 (0.67) vs. Syn: 3.51 (1.01).

Jay Taylor () Diffusion Processes in Population Genetics 2009 105 / 154



Selection and Genetic Drift Substitution Rates and Molecular Evolution

Some applications of substitution rates:

Estimating mutation rates:

The fact that the neutral substitution rate equals the mutation rate can be used to
estimate the mutation rate from sequence data.

If two species last shared a common ancestor T generations ago, then the number
of neutral substitutions per site that will have occurred since they split will be
Poisson distributed with mean 2µT .

T can be estimated from fossil or biogeographical data.

Dating species divergence:

If the mutation rate is known, then genetic data can be used to estimate how long
ago two species diverged.

We must assume that substitutions are neutral.

We must also assume that the mutation rate is constant (molecular clock).
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Selection in Diploid Populations Diffusion Approximation

Selection in Diploid Populations

Recall that a diploid species contains two copies of each chromosome. Our goal in this
section is to study a model of selection and drift in a diploid population.

To model selection in such a population, we need to assign a fitness to each diploid
genotype. Here we will adopt the convention that the relative fitness of the A2A2

homozygote is 1:

genotype relative fitness

A1A1 1 + s
A1A2 1 + hs
A2A2 1

In this scheme, s is called the selection coefficient of the A1A1 homozygote, and h is
called the degree of dominance of A1.
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Selection in Diploid Populations Diffusion Approximation

In principle, we need to know the frequencies of each of the three diploid genotypes.
However, if the population is random mating, then we can formulate a model which
tracks only the changes in the allele frequencies. We will assume that the population has
a life history summarized by the following diagram:

gametes
mating→ zygotes

selection→ juveniles
regulation→

p,∞ ∞ ∞

adults
meiosis→ gametes

N p′,∞

In other words, the diploid adults produce an effectively infinite number of haploid
gametes, which combine at random to form diploid zygotes. These zygotes then
undergo selection while developing into juveniles. Finally, population regulation (e.g.,
due to competition for territories) allows only N juveniles to survive to adulthood.

Jay Taylor () Diffusion Processes in Population Genetics 2009 108 / 154



Selection in Diploid Populations Diffusion Approximation

In principle, we need to know the frequencies of each of the three diploid genotypes.
However, if the population is random mating, then we can formulate a model which
tracks only the changes in the allele frequencies. We will assume that the population has
a life history summarized by the following diagram:

gametes
mating→ zygotes

selection→ juveniles
regulation→

p,∞ ∞ ∞

adults
meiosis→ gametes

N p′,∞

In other words, the diploid adults produce an effectively infinite number of haploid
gametes, which combine at random to form diploid zygotes. These zygotes then
undergo selection while developing into juveniles. Finally, population regulation (e.g.,
due to competition for territories) allows only N juveniles to survive to adulthood.

Jay Taylor () Diffusion Processes in Population Genetics 2009 108 / 154



Selection in Diploid Populations Diffusion Approximation

In principle, we need to know the frequencies of each of the three diploid genotypes.
However, if the population is random mating, then we can formulate a model which
tracks only the changes in the allele frequencies. We will assume that the population has
a life history summarized by the following diagram:

gametes
mating→ zygotes

selection→ juveniles
regulation→

p,∞ ∞ ∞

adults
meiosis→ gametes

N p′,∞

In other words, the diploid adults produce an effectively infinite number of haploid
gametes, which combine at random to form diploid zygotes. These zygotes then
undergo selection while developing into juveniles. Finally, population regulation (e.g.,
due to competition for territories) allows only N juveniles to survive to adulthood.

Jay Taylor () Diffusion Processes in Population Genetics 2009 108 / 154



Selection in Diploid Populations Diffusion Approximation

We can study this model in terms of the changes in the gametic frequencies of A1 from
generation to generation. However, to determine the transition probabilities for p → p′,
we will need to examine how mating, selection and population regulation alter the
genotypic frequencies at intermediate stages.

Suppose that the gametic frequency of A1 in generation t is pN(t) = p.

Random mating: Because mating is random and the number of gametes is assumed to
be infinite, the frequencies of the diploid genotypes immediately following mating are in
Hardy-Weinberg equilibrium:

genotype frequency

A1A1 p11 = p2

A1A2 p12 = 2p(1− p)
A2A2 p22 = (1− p)2
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Selection in Diploid Populations Diffusion Approximation

Selection: Selection causes the frequency of each genotype to change in proportion to
its relative fitness. That is, if pij is the frequency of AiAj before selection, then the
frequency p∗ij of this genotype after selection is

p∗ij = pij

“wij

w̄

”
,

where wij is the relative fitness of AiAj and w̄ is the mean fitness of the population:

w̄ = p2(1 + s) + 2p(1− p)(1 + hs) + (1− p)2

= 1 + p2s + 2p(1− p)hs.

Consulting the table of relative fitnesses on a previous slide, we find:

genotype frequency after selection

A1A1 p∗11 = p11(1 + s)/w̄
A1A2 p∗12 = p12(1 + hs)/w̄
A2A2 p∗22 = p22/w̄
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Selection in Diploid Populations Diffusion Approximation

Population regulation: We will assume that population regulation acts in a manner
similar to the Wright-Fisher scheme: the N adults are sampled uniformly at random
(independently and with replacement) from the juvenile cohort. However, because the
species is diploid, we are actually sampling two genes per individual.

Suppose that p′ij denotes the frequency of AiAj genotypes following population
regulation. Then, the numbers of adults of each of the three genotypes has a
Multinomial distribution:

N(p′11, p
′
12, p

′
22) ∼ Multinomial(N, p∗11, p

∗
12, p

∗
22)

Meiosis: The final stage is meiosis, during which each adult produces an effectively
infinite number of haploid gametes. Whereas A1A1 adults produce only A1 gametes and
A2A2 adults produce only A2 gametes, A1A2 adults produce an equal mixture of A1 and
A2 gametes. It follows that the gametic frequency of A1 in generation t + 1 is equal to:

pN(t + 1) = p′ = p′11 +
1

2
p′12.
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Selection in Diploid Populations Diffusion Approximation

To derive a diffusion approximation for the model, we must assume that the strength of
selection is of order O(1/N): s = σ/N. Then, if δ = p′ − p is the change in the gametic
frequency of A1 over one generation, we have:

2NEp

ˆ
δ
˜

= 2σ
`
h + (1− 2h)p

´
p(1− p) + O(N−1)

2NEp

ˆ
δ2˜ = p(1− p) + O(N−1)

2NEp

ˆ
δn˜ = O(N−1) if n ≥ 3 .

It follows that the processes (pN(b2Ntc) : t ≥ 0) converge to a Wright-Fisher diffusion
with generator

Gf (p) =
1

2
p(1− p)f ′′(p) + 2σ

`
h + (1− 2h)p

´
p(1− p)f ′(p).
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Selection in Diploid Populations Diffusion Approximation

Remarks:

We have rescaled time by a factor of 2N rather than N because there are 2N
genes in a diploid population with N individuals.

The infinitesimal variance of the diffusion approximation is the same as that for a
haploid Wright-Fisher model with N individuals:

a(p) = p(1− p)

This can be explained by noting that because selection is weak (of order O(1/N)) and
mating is random, the two alleles carried by each individual are nearly independent of
one another. Thus, sampling N individuals at random in this model is essentially
equivalent to sampling 2N individuals at random.
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Selection in Diploid Populations Diffusion Approximation

The infinitesimal drift of the diffusion approximation is:

b(p) = 2σ
`
h + (1− 2h)p

´
p(1− p)

= σ(p)p(1− p).

σ(p) ≡ 2σ
`
h + (1− 2h)p

´
is the selection coefficient of allele A1 relative to A2.

Selection in diploid populations is usually frequency-dependent.

The marginal fitness of an allele is equal to the average of the fitnesses of the
genotypes containing that allele, weighted by the frequencies of those genotypes:

wA1 = pw11 + (1− p)w12 = 1 + ps + (1− p)hs

wA2 = (1− p)w22 + pw12 = 1 + phs

wA1 − wA2 =
“
h + p(1− 2h)

”
s
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Selection in Diploid Populations Dominance and Fixation

Let’s consider some specific cases.

Genic selection: If h = 1/2, then the selection coefficient

σ(p) = σ

does not depend on the allele frequency, and the diffusion is equivalent to that derived
for a haploid population in which the relative fitnesses of the alleles are 1 + σ/N : 1.

In this case, we say the fitness of a diploid genotype is an additive function of the
number of copies of A1 that it contains:

A1A1 A1A2 A2A2

1 + s 1 + s/2 1

In other words, each copy of A1 adds s/2 to the relative fitness of the genotype.
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Selection in Diploid Populations Dominance and Fixation

A1 is dominant: If h ∈ (1/2, 1], then A1 is said to be dominant to A2 because the
fitness of the heterozygote is closer to that of the A1A1 homozygote than to the fitness
of the A2A2 homozygote:

A1A1 A1A2 A2A2

p2 2p(1− p) (1− p)2

1 + s 1 + hs 1

In this case, the selection coefficient is a decreasing function of p:

σ(p) = 2σ
`
h + (1− 2h)p

´
,

i.e., the selective advantage of A1 is greater when A1 is rare than when A1 is common.

If h = 1, then A1 is said to be completely dominant to A2.

Jay Taylor () Diffusion Processes in Population Genetics 2009 116 / 154



Selection in Diploid Populations Dominance and Fixation

A1 is dominant: If h ∈ (1/2, 1], then A1 is said to be dominant to A2 because the
fitness of the heterozygote is closer to that of the A1A1 homozygote than to the fitness
of the A2A2 homozygote:

A1A1 A1A2 A2A2

p2 2p(1− p) (1− p)2

1 + s 1 + hs 1

In this case, the selection coefficient is a decreasing function of p:

σ(p) = 2σ
`
h + (1− 2h)p

´
,

i.e., the selective advantage of A1 is greater when A1 is rare than when A1 is common.

If h = 1, then A1 is said to be completely dominant to A2.

Jay Taylor () Diffusion Processes in Population Genetics 2009 116 / 154



Selection in Diploid Populations Dominance and Fixation

A1 is dominant: If h ∈ (1/2, 1], then A1 is said to be dominant to A2 because the
fitness of the heterozygote is closer to that of the A1A1 homozygote than to the fitness
of the A2A2 homozygote:

A1A1 A1A2 A2A2

p2 2p(1− p) (1− p)2

1 + s 1 + hs 1

In this case, the selection coefficient is a decreasing function of p:

σ(p) = 2σ
`
h + (1− 2h)p

´
,

i.e., the selective advantage of A1 is greater when A1 is rare than when A1 is common.

If h = 1, then A1 is said to be completely dominant to A2.

Jay Taylor () Diffusion Processes in Population Genetics 2009 116 / 154



Selection in Diploid Populations Dominance and Fixation

A1 is dominant: If h ∈ (1/2, 1], then A1 is said to be dominant to A2 because the
fitness of the heterozygote is closer to that of the A1A1 homozygote than to the fitness
of the A2A2 homozygote:

A1A1 A1A2 A2A2

p2 2p(1− p) (1− p)2

1 + s 1 + hs 1

In this case, the selection coefficient is a decreasing function of p:

σ(p) = 2σ
`
h + (1− 2h)p

´
,

i.e., the selective advantage of A1 is greater when A1 is rare than when A1 is common.

If h = 1, then A1 is said to be completely dominant to A2.

Jay Taylor () Diffusion Processes in Population Genetics 2009 116 / 154



Selection in Diploid Populations Dominance and Fixation

With h = 1, the marginal fitnesses are:

wA1 = p(1 + s) + (1− p)(1 + s) = (1 + s)

wA2 = p(1 + s) + (1− p) = 1 + ps.

Thus, when A1 is rare, wA1 = 1 + s while wA2 ≈ 1, and so the selection coefficient is
approximately s.

In contrast, when A1 is common, wA2 ≈ wA1 = 1 + s and so the selection coefficient is
approximately 0.

In other words, under complete dominance, the marginal fitness of the dominant allele is
independent of its frequency. On the other hand, the marginal fitness of A2 does depend
on p because the fitness of any particular copy of A2 depends on whether it occurs
within a homozygote or heterozygote.
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Selection in Diploid Populations Dominance and Fixation

A1 is recessive: If h ∈ [0, 1/2), then A1 is said to be recessive to A2 because the fitness
of the heterozygote is closer to that of the A2A2 homozygote than to the fitness of the
A1A1 homozygote. In this case, the selection coefficient σ(p) is an increasing function of
p.

If h = 0, then A1 is completely recessive to A2 and the marginal fitnesses are

wA1 = p(1 + s) + (1− p) = 1 + ps

wA2 = p + (1− p) = 1.

Thus, the marginal fitness of A1 increases with frequency because more copies of A1 are
incorporated into homozygotes, while the marginal fitness of A2 does not depend on the
frequency.
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Selection in Diploid Populations Dominance and Fixation

Overdominance: If σ > 0 and h > 1, then the fitness of the heterozygote is greater
than the fitness of either homozygote and the two alleles are said to be overdominant.

In this case, there is an intermediate frequency,

p∗ =
h

2h − 1
∈ (0, 1),

such that

σ(p∗) = 2σ
`
h + (1− 2h)p∗

´
= 0 (both alleles are equally fit)

σ(p) > 0 if p < p∗ (A1 is more fit)

σ(p) < 0 if p > p∗ (A2 is more fit)

Thus, A1 tends to rise in frequency when rare and tends to decrease in frequency when
common. This kind of selection is called balancing selection and maintains genetic
variation in the population.
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Selection in Diploid Populations Dominance and Fixation

Example: The classic example of overdominance is the sickle cell mutation that is
prevalent in some human populations with a high incidence of malaria infections. This is
an amino-acid changing mutation which causes hemoglobin molecules to clump together
and deform red blood cells.

There are two alleles - A which is the non-sickle-cell (‘wild type’) allele and S which
causes sickling of red blood cells. The diploid genotypes and their phenotypes are:

AA: These individuals have normal hemoglobin, but are susceptible to malaria
infections (which can be fatal in children and pregnant women).

AS : These individuals have a mild form of anemia but are very resistant to malaria
infection.

SS : These individuals have a very severe anemia.
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Selection in Diploid Populations Dominance and Fixation

In regions with a high incidence of malaria, the benefits of the resistance to malaria
conferred by the AS genotype outweigh the costs of the mild anemia, and AS
heterozygotes have higher fitness than either homozygote.

The viabilities of the three genotypes in malarial regions have been estimated to be (see
Cavalli-Sforza and Bodmer, 1971):

SS AS AA
0.2 1.1 1

Thus, in the notation of our model, σ ≈ −0.8 and h ≈ −0.125. This predicts an
equilibrium frequency for S of p∗ = 0.1, whereas the observed frequency is about 0.09
averaged across West Africa.

In contrast, in regions with little or no malaria, the sickle cell mutation is deleterious and
is usually very rare.
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Selection in Diploid Populations Dominance and Fixation

Underdominance: If σ < 0 and h > 1, then the fitness of the heterozygote is less than
that of either homozygote and the two alleles are said to be underdominant.

In this case, there is still an intermediate frequency,

p∗ =
h

2h − 1
∈ (0, 1),

such that σ(p∗) = 0, but now

σ(p) < 0 if p < p∗ (A2 is more fit)

σ(p) > 0 if p > p∗ (A1 is more fit)

Thus, A1 tends to decrease in frequency when rare, but increases when common. This
kind of selection favors common alleles and removes polymorphism from the population.

Example: Chromosomal rearrangements are often underdominant due to problems that
occur during meiosis. These may sometimes play a role in speciation.
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Selection in Diploid Populations Dominance and Fixation

We can use our analysis of the hitting probabilities of a diffusion process to calculate the
fixation probabilities of alleles in a diploid population:

u(p) ≡ Pp{A1 is fixed} =

R p

0
e−4σhq−2σ(1−2h)q2

dqR 1

0
e−4σhq−2σ(1−2h)q2dq

.

The fixation probabilities of a new allele (p = 1/2N) are shown as functions of the
dominance coefficient h in the figure below.

Fixation Probabilities of New Alleles
in a Diploid Population (2N = 2000)
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Selection in Diploid Populations Dominance and Fixation

This figure makes several important points:

Dominant beneficial mutations are more likely to be fixed than recessive beneficial
mutations.

Recessive deleterious mutations are more likely to be fixed than dominant
deleterious mutations.

Overdominance increases the fixation probabilities of rare alleles.

Underdominance decreases the fixation probabilities of rare alleles.

It has been observed that deleterious mutations are more likely to be recessive than
dominant. This may be because many deleterious mutations are loss-of-function
mutations: the mutation prevents the gene from being expressed or inactivates the
protein. In this case, the wild type allele in a heterozygote may produce sufficient
protein to complement the inactive allele. Such alleles will be more likely to be fixed in a
population than they would if they were dominant.
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Cannings Models

Cannings Models and Diffusion Approximations

Earlier, we showed that the diffusion approximations for the Wright-Fisher model and
the Moran model are equivalent, apart from a change in time scale:

Gf (p) =
1

2
p(1− p)f ′′(p) (Wright-Fisher model)

Gf (p) = p(1− p)f ′′(p) (Moran model).

Our goal in this section is to show that the Wright-Fisher diffusion is also the diffusion
approximation for a much wider class of neutral population genetics models, called
Cannings models. These will have the property that the numbers of surviving offspring
of the individuals alive in the previous generation are exchangeable:

(ζ1, · · · , ζN)
d
= (ζσ(1), · · · , ζσ(N)),

where σ is any permutation of {1, · · · ,N}.
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Cannings Models

One criticism of the Wright-Fisher model is that the biological processes underlying birth
and population regulation are obscure. To make these processes more explicit, we will
consider models that satisfy the following assumptions:

Constant population size: N haploid adults.

Non-overlapping generations.

Each adult gives birth to a random number of offspring, and the numbers of
offspring born to the N adults are IID random variables, with the same distribution
as some random variable η.

N of the offspring are sampled without replacement to develop into the adults of
the next generation; all other individuals (adult and offspring) die.

Notice that the numbers of surviving offspring are exchangeable but not
independent.
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Cannings Models

This model explicitly prescribes the fecundity of each adult, and delays population
regulation until after birth. For example, this could apply to a haploid organism that
sheds spores which only survive if they land on an unoccupied territory.

We will make several assumptions about the offspring distribution η:

P{η = 0} = 0, i.e., each adult gives birth to at least one offspring;

P{η ≤ M} = 1, i.e., η is bounded. This implies:

m = E
ˆ
η
˜
<∞;

σ2 = E
ˆ
(η −m)2

˜
<∞.

Note: The first assumption can be relaxed provided we assume that m > 1. However,
then we must modify the model to deal with times when fewer than N offspring are
born. This happens exceptionally rarely when N is large and m > 1, and so it is still
possible to derive a diffusion approximation.
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Cannings Models

Suppose that there are two alleles, A and a, present in the population, and let p denote
the frequency of A. Our first problem is to determine the distribution of the frequency
of A in the next generation. Let us call this p′.

Let η1, · · · , ηN be the offspring numbers of these N adults, and suppose that we
arbitrarily assign the labels 1, · · · ,Np to the type A adults, and Np + 1, · · · ,N to
the type a adults.

The total number of type A offspring is

Y =

NpX
i=1

ηi ,

while the total number of offspring of either type is

Z =
NX

i=1

ηi .
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Cannings Models

Since the adults of the next generation are obtained by sampling N individuals without
replacement from these Z offspring, it follows that the conditional distribution of the
number of A offspring surviving to adulthood given Y and Z is hypergeometric,

X ∼ H(Z ,Y ,N),

and then p′ = X/N.

We will need the following facts about the moments of the hypergeometric distribution.
If a random variable S has hypergeometric distribution H(N,m, n), then

E
ˆ
S
˜

= n
“m

N

”
E
ˆ

(S − E[S ])2 ˜ = n

„
N − n

N − 1

«“m

N

”“
1− m

N

”
E
ˆ

(S − E[S ])e ˜ = O(ne−2) if e ≥ 3.
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Cannings Models

To derive a diffusion approximation for this model, we need to calculate the limits of the
expectations NEp[(p′ − p)n] as N tends to infinity.

First consider the case n = 1. By conditioning on Y and Z , we have:

Ep

ˆ
p′
˜

= Ep

»
1

N
X

–
= Ep

»
1

N
E
ˆ
X |Y ,Z

˜–
= Ep

»
1

N

„
N

Y

Z

«–
= Ep

»
Y

Z

–
.

Using the fact that

E
hηi

Z

i
= E

hη1

Z

i
(by exchangeability of the ηi )

this last term can be rewritten as:

Ep

»
Y

Z

–
= Ep

"
1

Z

NpX
i=1

ηi

#
=

NpX
i=1

E
hηi

Z

i
= NpE

hη1

Z

i
.
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Cannings Models

Similarly,

1 = Ep

»
Z

Z

–
= Ep

"
1

Z

NX
i=1

ηi

#
=

NX
i=1

E
hηi

Z

i
= NE

hη1

Z

i
,

which implies that

E
hη1

Z

i
=

1

N
.

Substituting this result into the identities obtained on the previous page shows that:

Ep

ˆ
p′
˜

= NpE
hη1

Z

i
= Np · 1

N
= p,

and so
lim

N→∞
NEp

ˆ
p′ − p

˜
= N(p − p) = 0.
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Cannings Models

Our next task is to find the limit of NEp

ˆ
δ2
˜

as N tends to infinity. As above, we can
simplify the calculation by conditioning on Y and Z :

NEp

ˆ
(p′ − p)2˜ = NEp

»
1

N2
(X − Np)2

–
= Ep

»
1

N
E
ˆ`

X − Np
´2|Y ,Z

˜–
= Ep

»
1

N
E
h“

X − E
ˆ
X |Y ,Z

˜
+ E

ˆ
X |Y ,Z

˜
− Np

”2

|Y ,Z
i–

= Ep

»
1

N
E
ˆ`

X − E
ˆ
X |Y ,Z

˜´2|Y ,Z
˜–

+Ep

»
2

N
E
ˆ`

X − E
ˆ
X |Y ,Z

˜´`
E
ˆ
X |Y ,Z

˜
− Np

´
|Y ,Z

˜–
+Ep

»
1

N
E
ˆ`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
˜–

≡ K1 + K2 + K3.
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Cannings Models

Beginning with K1, observe that the expression inside the Ep[·] in this term is just 1/N
times the variance of this hypergeometric distribution,

E
ˆ`

X − E
ˆ
X |Y ,Z

˜´2|Y ,Z
˜

= N

„
Z − N

Z − 1

«„
Y

Z

«„
1− Y

Z

«
.

Consequently,

K1 = Ep

»„
Z − N

Z − 1

«„
Y

Z

«„
1− Y

Z

«–
= Ep

" 
Ẑ − 1

Ẑ − 1/N

! 
Ŷ

Ẑ

! 
1− Ŷ

Ẑ

!#
,

where we have introduced the random variables Ŷ = Y /N and Ẑ = Z/N.
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Jay Taylor () Diffusion Processes in Population Genetics 2009 133 / 154



Cannings Models

Beginning with K1, observe that the expression inside the Ep[·] in this term is just 1/N
times the variance of this hypergeometric distribution,

E
ˆ`

X − E
ˆ
X |Y ,Z

˜´2|Y ,Z
˜

= N

„
Z − N

Z − 1

«„
Y

Z

«„
1− Y

Z

«
.

Consequently,

K1 = Ep

»„
Z − N

Z − 1

«„
Y

Z

«„
1− Y

Z

«–
= Ep

" 
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Cannings Models

Now, because we have assumed that m = E
ˆ
η
˜
<∞, the strong law of large numbers

tells us that
Ŷ → mp a.s. and Ẑ → m a.s.

as N tends to infinity.

Furthermore, because we have also assumed that η ≥ 1, we know that Ẑ ≥ 1 which
implies that the expression within the expectation is bounded above by 1. Thus, we can
bring the limit inside the expectation:

lim
N→∞

K1 = lim
N→∞

Ep

" 
Ẑ − 1

Ẑ − 1/N

! 
Ŷ

Ẑ

! 
1− Ŷ

Ẑ

!#

=

„
m − 1

m

«“mp

m

”“
1− mp

m

”
=

`
1− 1/m

´
p(1− p).
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as N tends to infinity.

Furthermore, because we have also assumed that η ≥ 1, we know that Ẑ ≥ 1 which
implies that the expression within the expectation is bounded above by 1. Thus, we can
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Next consider K2. Because the expression

E
ˆ
X |Y ,Z

˜
− Np = N

„
Y

Z
− p

«
is a deterministic function of Y and Z (i.e., if we know Y and Z , then we know this
expression exactly), it can be pulled outside of the conditional expectation in K2.

This gives

K2 = Ep

»
2

N
E
ˆ`

X − E
ˆ
X |Y ,Z

˜´`
E
ˆ
X |Y ,Z

˜
− Np

´
|Y ,Z

˜–
= Ep

»
2

„
Y

Z
− p

«
E
h
X − E

ˆ
X |Y ,Z

˜
|Y ,Z

i–
= 0,

which vanishes because E
h
X − E

ˆ
X |Y ,Z

˜
|Y ,Z

i
= 0.
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Cannings Models

Last, observe that because E
ˆ
X |Y ,Z

˜
= NY /Z and Ep[Y /Z ] = p, we can write

K3 = Ep

»
1

N
E
h`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
i–

= Ep

"
N

„
Y

Z
− p

«2
#

= N

 
Ep

"„
Y

Z

«2
#
− p2

!
.

To calculate the first term in parentheses, we will again exploit the exchangeability of
(η1, · · · , ηN). Specifically, observe that

E
»

1

Z 2
η2

i

–
= E

»
1

Z 2
η2

1

–
i = 1, · · · ,N

E
»

1

Z 2
ηiηj

–
= E

»
1

Z 2
η1η2

–
i 6= j = 1, · · · ,N.

Jay Taylor () Diffusion Processes in Population Genetics 2009 136 / 154



Cannings Models

Last, observe that because E
ˆ
X |Y ,Z

˜
= NY /Z and Ep[Y /Z ] = p, we can write

K3 = Ep

»
1

N
E
h`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
i–

= Ep

"
N

„
Y

Z
− p

«2
#

= N

 
Ep

"„
Y

Z

«2
#
− p2

!
.

To calculate the first term in parentheses, we will again exploit the exchangeability of
(η1, · · · , ηN). Specifically, observe that

E
»

1

Z 2
η2

i

–
= E

»
1

Z 2
η2

1

–
i = 1, · · · ,N

E
»

1

Z 2
ηiηj

–
= E

»
1

Z 2
η1η2

–
i 6= j = 1, · · · ,N.

Jay Taylor () Diffusion Processes in Population Genetics 2009 136 / 154



Cannings Models

Last, observe that because E
ˆ
X |Y ,Z

˜
= NY /Z and Ep[Y /Z ] = p, we can write

K3 = Ep

»
1

N
E
h`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
i–

= Ep

"
N

„
Y

Z
− p

«2
#

= N

 
Ep

"„
Y

Z

«2
#
− p2

!
.

To calculate the first term in parentheses, we will again exploit the exchangeability of
(η1, · · · , ηN). Specifically, observe that

E
»

1

Z 2
η2

i

–
= E

»
1

Z 2
η2

1

–
i = 1, · · · ,N

E
»

1

Z 2
ηiηj

–
= E

»
1

Z 2
η1η2

–
i 6= j = 1, · · · ,N.

Jay Taylor () Diffusion Processes in Population Genetics 2009 136 / 154



Cannings Models

Last, observe that because E
ˆ
X |Y ,Z

˜
= NY /Z and Ep[Y /Z ] = p, we can write

K3 = Ep

»
1

N
E
h`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
i–

= Ep

"
N

„
Y

Z
− p

«2
#

= N

 
Ep

"„
Y

Z

«2
#
− p2

!
.

To calculate the first term in parentheses, we will again exploit the exchangeability of
(η1, · · · , ηN). Specifically, observe that

E
»

1

Z 2
η2

i

–
= E

»
1

Z 2
η2

1

–
i = 1, · · · ,N

E
»

1

Z 2
ηiηj

–
= E

»
1

Z 2
η1η2

–
i 6= j = 1, · · · ,N.

Jay Taylor () Diffusion Processes in Population Genetics 2009 136 / 154



Cannings Models

Last, observe that because E
ˆ
X |Y ,Z

˜
= NY /Z and Ep[Y /Z ] = p, we can write

K3 = Ep

»
1

N
E
h`

E
ˆ
X |Y ,Z

˜
− Np

´2|Y ,Z
i–

= Ep

"
N

„
Y

Z
− p

«2
#

= N

 
Ep

"„
Y

Z

«2
#
− p2

!
.

To calculate the first term in parentheses, we will again exploit the exchangeability of
(η1, · · · , ηN). Specifically, observe that

E
»

1

Z 2
η2

i

–
= E

»
1

Z 2
η2

1

–
i = 1, · · · ,N

E
»

1

Z 2
ηiηj

–
= E

»
1

Z 2
η1η2

–
i 6= j = 1, · · · ,N.

Jay Taylor () Diffusion Processes in Population Genetics 2009 136 / 154



Cannings Models

It follows that

Ep

"„
Y

Z

«2
#

= Ep

24 1

Z 2

 
NpX
i=1

ηi

!2
35

= Ep

24 1

Z 2

NpX
i=1

η2
i +

1

Z 2

NpX
i 6=j

ηiηj

35
= NpE

»
η2

1

Z 2

–
+ Np(Np − 1)E

hη1η2

Z 2

i
.

Exchangeability can be used to further simplify this expression. Observe that:

1 = E

"„
Z

Z

«2
#

= E

24 1

Z 2

 
NX

i=1

ηi

!2
35

= NE
»
η2

1

Z 2

–
+ N(N − 1)E

hη1η2

Z 2

i
= N

“ vN

N2

”
+ N(N − 1)E

hη1η2

Z 2

i
,

where vN ≡ N2E
ˆ
η2

1/Z
2
˜
.
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This implies that

E
hη1η2

Z 2

i
=

1

N(N − 1)

“
1− vN

N

”
.

Substituting this expression into the first set of identities on the preceding page shows
that

NEp

"„
Y

Z

«2
#

= vNp

„
1− Np − 1

N − 1

«
+ Np

„
Np − 1

N − 1

«
,

whence

K3 = N

 
Ep

"„
Y

Z

«2
#
− p2

!

= vNp

„
1− Np − 1

N − 1

«
+ Np

„
Np − 1

N − 1
− p

«
= vNp(1− p)− p(1− p) + O(N−1)

= (vN − 1)p(1− p) + O(N−1).
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Cannings Models

Finally, observe that

vN ≡ N2E
»
η2

1

Z 2

–
= E

»
η2

1

Ẑ 2

–
,

where Ẑ = Z/N.

To evaluate the limit as N →∞, recall that Ẑ → m (a.s.), and note
that

η2
1

Ẑ 2
≤ M2 <∞ (since Ẑ > 1 and η1 ≤ M)

Thus, as before, we can bring the limit inside the expectation, obtaining

lim
N→∞

vN =
1

m2
E
ˆ
η2

1

˜
≡ v

m2
,

and so

lim
N→∞

K3 =
“ v

m2
− 1
”

p(1− p) =
σ2

m2
,

where σ2 = v −m2 is the variance of η.
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Having evaluated each of the terms K1, K2, and K3, we can calculate

lim
N→∞

NEp

ˆ
δ2˜ = K1 + K2 + K3

=
`
1− 1/m

´
p(1− p) + 0 +

σ2

m2
p(1− p)

=

„
σ2

m2
+ 1− 1

m

«
p(1− p).
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Cannings Models

To show that third and higher order moments of δ vanish in the limit, we calculate

NEp

ˆ
δn˜ = NEp

»
1

Nn
E
ˆ
δn|Y ,Z

˜–

= Ep

»
1

Nn−1
O
`
Nn−2´–

= N−1 when n ≥ 3,

which vanishes as N tends to infinity.

Remark: We are implicitly using the fact that the bound in O
`
Nn−2) is uniform in Y

and Z .
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Cannings Models

To summarize, we have shown that:

lim
N→∞

NEp

ˆ
δ
˜

= 0

lim
N→∞

NEp

ˆ
δ2˜ =

„
1− 1

m
+
σ2

m2

«
p(1− p)

lim
N→∞

NEp

ˆ
δn˜ = 0 if n ≥ 3.

Consequently, we know that when N is large, the process (pN(bNtc) : t ≥ 0) can be
approximated by the diffusion with generator

Gf (p) =
1

2

„
1− 1

m
+
σ2

m2

«
p(1− p)f ′′(p).

This is just a neutral Wright-Fisher diffusion run at speed 1− 1
m

+ σ2

m2 .
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Cannings Models

Remarks:

Cannings models can be approximated by the Wright-Fisher diffusion when N is
large.

In fact, this is true for a much larger class of models - the key conditions are
exchangeability and finite variance of the offspring numbers.

The diffusion approximation is said to be robust - the fine details of the model
only influence the limit through a scalar time change.

We can think of the diffusion approximation as a functional version of the Central
Limit Theorem.
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Effective Population Size

Effective Population Size

Suppose that

(pN
WF (t) : t ≥ 0) is the Wright-Fisher model for a population of size N

(pN
C (t) : t ≥ 0) is a Cannings model for a population of size N

If N is large, then the process (pN
WF (btc) : t ≥ 0) can be approximated by the

Wright-Fisher diffusion with generator

Gf (p) =
1

2N
p(1− p)f ′′(p).

Likewise, we know that the Cannings model (pN
C (btc) : t ≥ 0) can be approximated by

the Wright-Fisher diffusion with generator

Gf (p) =
1

2N

„
1− 1

m
+
σ2

m2

«
p(1− p)f ′′(p).
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Effective Population Size

Notice that the Wright-Fisher model (pNe
WF (btc) : t ≥ 0) is approximated by the same

diffusion process as the Cannings model if

Ne =
N

1− 1
m

+ σ2

m2

.

This implies that the two models have similar behavior when N is large:

(pN
C (btc) : t ≥ 0) ≈ (pNe

WF (btc) : t ≥ 0).

The quantity Ne is said to be the effective population size of the population with
census population size N described by the Cannings model.
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Effective Population Size

The most important aspect of the effective population size is that it determines the rate
at which genetic drift will remove variation from the population. In general, the smaller
the effective population size is, the more rapidly genetic variation will be lost.

For the Cannings model, notice that

Ne = N when σ2 = m (as for the Poisson distribution)

Ne ≈ N when m2 � σ2 and m� 1

Ne ≈ N
σ2 if σ2 � m2

In particular, the effective population size may be much smaller than the census
population size when there is large variance in reproductive success between adults.
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Effective Population Size

Recall (from the first problem set) that the generator of the diffusion approximation for
a Wright-Fisher model with stochastically varying population size is:

Gφ(p) =
1

2Ne
p(1− p)φ′′(p),

where

Ne =
1

E
ˆ

1
N

˜ =
1P
i

qi
Ni

qi = P{N = Ni} ( assumed IID across generations)

This shows that:

The effective population size of a population with fluctuating population sizes is
the harmonic mean of the census population size.

Since the harmonic mean is dominated by small values, Ne is very sensitive to
periods when the population size is small. Such episodes are called bottlenecks.
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Effective Population Size

Estimation: The effective population size can be estimated from genetic data if we have
an independent estimate of the mutation rate per generation (e.g., from divergence
between species).

For example, suppose that the population contains two alleles, A and a, and that the
frequency of A can be modeled by a Wright-Fisher diffusion with generator

Gφ(p) =
1

2Ne
p(1− p)φ′′(p) + µ(1− 2p)φ′(p).

Earlier, we showed that the stationary distribution for this process is just the Beta
distribution with parameters 2θ and 2θ, where θ = Neµ in a haploid population or
θ = 2Neµ in a diploid population. Consequently, the expected heterozygosity is

H̄ = 2

Z 1

0

p(1− p)π(p)dp =
2θ

4θ + 1
.
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Effective Population Size

It follows that a moment estimator for θ is

θ̂ =
1

2

„
H

1− 2H

«
.

Thus, if we know µ, then we can use this result to estimate Ne :

N̂e =
1

2µ

„
H

1− 2H

«
(haploid population)

N̂e =
1

4µ

„
H

1− 2H

«
(diploid population)

H can be estimated from sequence data by calculating the sample probability that two
individuals have different nucleotides at the same site in a gene.
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Effective Population Size
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Effective Population Size

Remark: In practice, more sophisticated methods can be used to obtain better
estimates of the effective population. Coalescent theory and computationally-intensive
methods play an important role in this area.

As a general rule, the effective population size is usually smaller, sometimes by several
orders of magnitude, than the census population size. Some examples include:

Organism Ne

E. coli (bacterium) 108 − 109

D. melanogaster (fruit fly) 106 − 107

house mouse 105 − 106

humans (global) 104

HIV (within host) 103
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Effective Population Size

The reduction of the effective population size relative to the census population size can
also be seen in the following figure.

Effective and Census Population Sizes

1.E+00
1.E+01
1.E+02
1.E+03
1.E+04
1.E+05
1.E+06
1.E+07
1.E+08
1.E+09
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1.E+11
1.E+12
1.E+13
1.E+14
1.E+15
1.E+16
1.E+17
1.E+18
1.E+19
1.E+20
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N
e
 (

e
st

im
a
te

d
)

Ne = N

These data were compiled by Nei and Graur (1984), using protein diversity (H) averaged
over 20 or more proteins to estimate Ne for 77 different species. These estimates assume
neutrality, which would be violated if most amino acid variation is weakly deleterious.
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Effective Population Size

Caveat: These estimates of Ne assume that the Wright-Fisher diffusion and Kingman’s
coalescent) are suitable models of genetic drift. If not, then the concept of the effective
population size is not well-defined.

Some complications that we have ignored in this course are:

Non-equilibrium population dynamics (e.g., bottlenecks).

Geographical structure of populations.

Lineage-specific mutation rates.

Strong selection and environmental variation.

Hitchhiking of neutral variation with selected alleles at linked loci.

Different models are needed to address these effects.
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