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GWAS techniques we will cover today

Today we will cover:

* GWAS meta-analysis
* Heritability estimation
* Fine-mapping

We will look at these in the context of two recent(ish) GWAS papers:

- Astle et al (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common
Complex Disease. Cell 17;167(5):1415-1429.e19 https://pubmed.ncbi.nlm.nih.gov/27863252/

- Robertson, Inshaw, et al (2021) Fine-mapping, trans-ancestral and genomic analyses identify causal
variants, cells, genes and drug targets for type 1 diabetes. Nat Genet . 53(7):962-971.
https://pubmed.ncbi.nlm.nih.gov/34127860/

There will a practical on meta-analysis and fine-mapping, and we will give links to other suggested
tutorials and vignettes in the slides.


https://pubmed.ncbi.nlm.nih.gov/27863252/
https://pubmed.ncbi.nlm.nih.gov/34127860/
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Meta-analysis



Modern large-scale GWAS are usually meta-analyses
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Ba = basophil; Ne = neutrophil; Eo = eosinophil; Mo = monocyte; Ma = macrophage; APC = antigen presenting cell; T = T-lymphocyte; B = B-lymphocyte.
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Meta-analyzing genetic data

* Meta-analysis is a technique for
combining summary statistics
across multiple different
studies.

* You need two bits of data for
each study, to capture effect
size precision

* e.g. betas and standard errors, or
p-values and sample sizes

* The paper uses the software
METAL, with settings for Inverse
Variance Based analysis

* This is more properly called a

“Fixed Effect Variance Weighted
Meta-analysis”
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Willer et al (2010) METAL: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics. 26(17): 2190-2191.



Meta-analyzing two studies with variance-
weighted fixed-effect meta-analysis
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Some things to be keep in mind

* Fixed effect meta-analysis assumes that them true effect size is exactly the
same in each study.
|t also requires them to be on the same SCALE

* E.g. meta-analyzin% a study measured in kg and one measured in Ibs would not work
as expected — you first need to convert them onto the same scale.

* You can test whether this assumption is violated usin% a heterogeneity test,
e.g. the Cochran Q test (implement in most meta-analysis software).

* There are lots of other options for meta-analysis:

* Random effects meta-analysis: effect size assumed to vary across studies, normally
distributed with some variance tau2

* Trans-ethnic meta-analysis: a specific type of random effect meta-analysis designed
to study genetics across populations (the MANTRA software is an example).

* Meta-regression: designed to answer the question “why do these studies differ?”, by
including per-study covariates (eg average age, ethnicity, etc).



Visualizing meta-analysis results: Forest plot
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Visualizing meta-analysis results: Forest plot
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Visualizing meta-analysis results: Forest plot
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The authors were worried
about heterogeneity

Heterogeneity Filtering Substantial statistical evidence for heterogeneity in effect sizes between the
studies of a meta-analysis for a genome-wide significant variant is often taken to suggest a false-
positive association. However, effect size heterogeneity in GWAS can be generated by:

* population-genotype interactions (i.e., true allelic effect size differences between studies),

* variation in LD between study populations,

» study specific quantile-inverse-normal transformations, when there are differences in the
adjustment of phenotypes for covariates between studies,

« differences in genotyping measurement error between studies (when independent of phenotype,
such errors tend to bias associations toward the null) and

« differences in phenotyping measurement techniques between studies, none of which are
necessarily reasons to regard an observed population association as spurious.
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Due to the high power of the present analysis, we found that common variants showing
directionally concordant evidence for association across the three studies were often removed
when we filtered variants by thresholding a statistic measuring evidence for quantitative
heterogeneity in effect size (Cochran’s Q). Consequently, we devised an alternative (generalized)
statistic to detect heterogeneity in effect size that we regard as implausible for genuine population
associations. The three dimensional plot (Figure S2E) illustrates our approach.
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(E) Ilustration of the method used to determine the weight of evidence that heterogeneity in effect sizes
across the three studies exceeded a tolerance criterion. The axes represent effect sizes in UK Biobank,
INTERVAL and UK BiLEVE. The black dot represents the vector of study specific effect size estimates (ﬁ
UK Biobank ﬁ INTERVALS> E UK BiLEVE,) for a variant. If the dot lies inside the infinite yellow double-pyramid
(defined by three planes intersecting the origin, each normal to one of ny = (1,-1/4, —1/4), np = (-1/4,1,
—1/4), n3 = (-1/4,—1/4, 1)) we consider that there is no evidence of between study heterogeneity. If the black
dot lies outside the yellow double-pyramid we measure the strength of evidence for heterogeneity as the
distance between the black dot and the nearest point on the surface of the pyramid (red dot), with distances
scaled to account for the standard errors of the study specific estimators. The nearest point on the pyramid is
thus defined as the point in the smallest confidence surface for the estimators that intersects the pyramid
(blue ellipsoid). We thresholded the distance score at 5.2 and filtered all variant-blood index pairs exceeding
the score from further analysis.
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Running these yourself

* The practical today will cover meta-analysed genome-wide summary
statistics from two studies, and visualizing them using forest plots.

 The METAL paper (cited earlier in the talk) is also quite short and
readable, and they also have a Quick Start tutorial that includes
example data:
https://genome.sph.umich.edu/wiki/METAL Quick Start



https://genome.sph.umich.edu/wiki/METAL_Quick_Start

Heritability estimation



A lot of figures involve heritability, variance

explained, R2, etc
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The broad-sense heritability
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The broad-sense heritability

y=9(G) +e
|
Actual phenotype

Best genetic prediction
of phenotype based on
genome (G)

environment

yNN(()?l)
?)(G) ™~ N(07H2)
e~ N(0,1— H?)

The squared correlation between the best possible
genetic predictor and the real phenotype is the
broad sense heritability, H2:

cor(y, §(G))* = H



The broad-sense heritability

environment

/ yNN(()?l)

y=19(G)+e 9(G) ~ N(0, H?)
- e~ N(0,1— H?)

Actual phenotype

Best genetic prediction
of phenotype based on

genome (G) The squared correlation between the best possible

genetic predictor and the real phenotype is the
broad sense heritability, H2:

The broad sense heritability is a measure of the

totality of genetic effects. It is mostly theoretical, COrTr (y7 @ (G ) ) 2 — H 2

though it is (in theory) equal to the correlation in
phenotype of identical twins raised apart.



The narrow-sense heritability

y=p8'G+e

y ~ N(0,1)
8" G ~ N(0,h?)
e ~ N(0,1— h?)

The squared correlation between the best possible
linear genetic predictor and the real phenotype is
the narrow sense heritability, h2:

cor(y, 5TG)2 — h?



The narrow-sense heritability

Environment plus non-linear

genetics

yzﬂTG+e/
/

Actual phenotype

Best LINEAR genetic
prediction of phenotype
based on genome (G)

y ~ N(0,1)
8" G ~ N(0,h?)
e~ N(0,1—h?)

The squared correlation between the best possible
linear genetic predictor and the real phenotype is
the narrow sense heritability, h2:

cor(y, 8" G)* = I’



The narrow-sense heritability

Environment plus non-linear
genetics

y:ﬂTG—I—e/ y~ N0 1)
V% 8" G ~ N(0,h?)
Actual phenotype e ~ N(O, 1 . h2)

Best LINEAR genetic

prediction of phenotype
based on genome (G) The squared correlation between the best possible

linear genetic predictor and the real phenotype is
the narrow sense heritability, h2:

The narrow sense heritability is the extent
to which genetics ‘breeds true’, i.e. is passed cCoT ( /BT G) 2 . h2
down in families i.e. where the correlation y? T

in phenotype is proportional to relatedness.



The SNP-heritability

Environment, non-linear genetics,
snps not in the study

/ ~ N(0, 1
Yy — 5anG5nP Te 7 ( )
L Gsnp ~ N(0, h?)

I SNp

Actual phenotype e ~ N(O, 1 . h2)

Best linear genetic
prediction of phenotype

based on the set of snps The squared. correlgtion be_tween the b_est possible

that are in the study (G_snp) linear genetic predictor using the snps in your study
and the real phenotype is the NNP heritability,
h2_snp:

T 2 _ 1.2
COT(?/? sanSTlp) _hsnp



The SNP-heritability

Environment, non-linear genetics,
snps not in the study

/ ~ N(0, 1
Y = 5anG5nP T € g ( )
L Gaenp ~ N(0, h?)

I SNp

Actual phenotype e ~ N(O, 1 . h2)

Best linear genetic prediction

of phenotype based on the
set of snps that are in the The squared correlation between the best possible

study (G_snp) linear genetic predictor using the snps in your study
- and the real phenotype is the NNP heritability,

The SNP heritability measured the total narrow-sense heritability ~ "2_SnP:

captured, i.e. the “variance explained”, by the variants you have cor (y T G ) 2 — h2
studied. In a GWAS, this usually means “captured by common ysnp — Snp snp

variants”. This gives a lower bound for the narrow-sense heritability.



Estimating the SNP heritability using a
polygenic risk score

Estimate a polygenic risk
score, by trying to estimate
the effect sizes (beta”hat):



Estimating the SNP heritability using a
polygenic risk score

Estimate a polygenic risk A
score, by trying to estimate T Gsnp
the effect sizes (beta”hat): snp

S

Estimated weights for each snp



Estimating the SNP heritability using a
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Crude method: estimate betas for
Estimate a polygenic risk A genome-wide significant hits and set beta
score, by trying to estimate /8 Gsnp = 0 for everything else.
the effect sizes (beta”hat): More sophisticated methods: use a lasso

or a Bayesian prior to shrink effect sizes
genome-wide.

Estimated weights for each snp
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Estimate a polygenic risk A genome-wide significant hits and set beta
score, by trying to estimate GSTL = 0 for everything else.
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or a Bayesian prior to shrink effect sizes
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phenotype in an

external replication
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you get the “variance

explained by the PRS”:



Estimating the SNP heritability using a
polygenic risk score

Crude method: estimate betas for
Estimate a polygenic risk A genome-wide significant hits and set beta
score, by trying to estimate GSTL = 0 for everything else.
the effect sizes (beta”hat): snp p More sophisticated methods: use a lasso
or a Bayesian prior to shrink effect sizes
genome-wide.

And test how well that ST G 2 h2 h2
correlates with the COr(yrreplication, 5snp snp) — prs < SNp
phenotype in an
external replication
dataset. Square it and
you get the “variance
explained by the PRS”:

But this will be less than
the true SNP heritability,
as inaccuracy in beta™hat
introduces error and
reduces the correlation.



LD Score Regression — a better way of
estimating SNP heritability

* We would like to measure the total amount of signal in the GWAS (eg
by average p-value or chi-square statistic).

* But this can be driven by real signal or population stratification

Bulik-Sullivan et al (2015) LD Score regression distinguishes
confounding from polygenicity in genome-wide association
studies. Nature Genetics 47, 291-295
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LD Score Regression — a better way of
estimating SNP heritability

* We would like to measure the total amount of signal in the GWAS (eg
by average p-value or chi-square statistic).

* But this can be driven by real signal or population stratification

Population stratification

1

‘ - o
Expected (-og P)

b ' Real signal

Observed (-log P)

N

L2 L T .4
0 1 2 K -
Expected (~log P)

Bulik-Sullivan et al (2015) LD Score regression distinguishes
confounding from polygenicity in genome-wide association
studies. Nature Genetics 47, 291-295



LD Scores

LD matrix:
-ﬂﬂﬂ
0.05 O
0.9 0.85
1 0.9

09 1



LD Scores N

LD matrix: LD scores: bj = ; sz'k'
-mmmm
0.05 0 rs1
0.9 0.85 rs2
1 0.9 rs3
0.9 1 rs4

LD scores measure how much potential each variant has for tagging causal variants.
The higher the LD score, the more true signal we expect it to tag, and the larger we
expect it’s test statistic (or the smaller we expect its p-value) to be.



LD Scores

M
. B — 2.
LD matrix: LD scores: EJ T Z Tjk-
-mmmm
0.05 O 122 +0.122 + 0.0572 + 072 =1.0125
0.9 0.85 rs2
1 0.9 rs3
0.9 1 rs4

LD scores measure how much potential each variant has for tagging causal variants.
The higher the LD score, the more true signal we expect it to tag, and the larger we
expect it’s test statistic (or the smaller we expect its p-value) to be.



LD Scores

M
R 2
LD matrix: LD scores: EJ ) kz Tjk-
: 1
el e

0.05 O 172 +0.122 + 0.0522 + 072 =1.0125
0.9 0.85 rs2 0.122 + 122 +0.912 + 0.8572 =2.5425
1 0.9 rs3 0.0522+0.912+172+0.912 = 2.6225
0.9 1 rs4 072+0.8572+0.972 + 1722 = 2.5325

LD scores measure how much potential each variant has for tagging causal variants.
The higher the LD score, the more true signal we expect it to tag, and the larger we
expect it’s test statistic (or the smaller we expect its p-value) to be.



LD Scores

Small LD score, only

M
l; = E r? tags itself and no
LD scores: - gk ,
1 other causal variants

k=
-mmam /

005 O 1742 +0.172 + 0.05”*2 + 0*2 = 1.0125
09 0.85 rs2 0.172 + 172 + 0.97°2 + 0.8572 = 2.5425

1 09 rs3 0.0542+0.972+172+0.92 = 2.6225
09 1 rs4 072+0.85/2+0.972 + 172 = 2.5325 \

Large LD score, tags

LD matrix:

LD scores measure how much potential each variant has for tagging causal variants. )
The higher the LD score, the more true signal we expect it to tag, and the larger we itself and two other

expect it’s test statistic (or the smaller we expect its p-value) to be. causal variants.



LD Scores

Small LD score, only

M
;= E r? tags itself and no
LD scores: I gk _
3¢0 1 other causal variants

k=
el e mmmmm----///

005 O 1742 +0.172 + 0.05”*2 + 0*2 = 1.0125
09 0.85 rs2 0.172 + 172 + 0.97°2 + 0.8572 = 2.5425

1 09 rs3 0.0542+0.972+112+0.9/2 = 2.6225
09 1 rs4 072+0.8582+0.972 + 172 = 2.5325 \

Large LD score, tags

LD matrix:

LD scores measure how much potential each variant has for tagging causal variants. )
The higher the LD score, the more true signal we expect it to tag, and the larger we itself and two other

expect it’s test statistic (or the smaller we expect its p-value) to be. causal variants.

But more than that — the higher the heritability, the larger the slope
between LD score and test statistic:

EDCI6) = W,plivr + Na+1

snp

X2 = test statistic, N = sample size, M = number of
SNPs, a = confounding
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LD Score Regression — a better way of

estimating SNP heritability

* We would like to measure the total amount of signal in the GWAS (eg

by average p-value or chi-square statistic).
* But this can be driven by real signal or population stratification
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Back to the paper

This is h"2_snp

T~

LD Score Estimated Heritability

30% -

20% |

10% -

0%

@

Blood Index Type

® Platelet

® Mature red cell
Immature red cell
Myeloid white cell
Lymphoid white cell
Compound white cell

’
.
T

10% 20% 30%
R 2of Selected Model x 100%

SNP heritability ranges from
5-30%. Polygenic risk scores
(based on significant
associations) capture a lot,
but far from all, of this.

T Thisis hA2_prs



Partitioned heritability

» Often we are interested in how much heritability is explained by
different type of variants:



Absolute Effect Size

Partitioned heritability

» Often we are interested in how much heritability is explained by
different type of variants:

p=19x10* ]
p=19x107"0
6.0x 103
= VEP Consequence
Splice don%r
aine
1.0 B Fra%gshlﬂ
0.5 M Start lost
" Inframe insertion
Missense
I Spllce region
ynoraymous
0.1 l3 UTR
B Non-coding transcript
M Intronic
B Upstream of gene
B Downstream of gene
M Intergenic
ngh Moderate Modifier
VEP Impact

Eg different consequences of the
mutation on nearby genes



Absolute Effect Size

Partitioned heritability

» Often we are interested in how much heritability is explained by
different type of variants:

=1.9x10*
p = p=82x10~7
=1.9x10°
P [ p=45x107 I

=6.0x107
| p=osxt u VEP Consequence p=36x10+
B gplice donor

! op gained
10 Framgshift o 1.0
0.5 M Start lost N
dai Inframe insertion @D o5-
Missense 5
M Splice region o)
ISynora/mous = -
=s| uT w ; Epigenome State
0.1+ 3'UTR A 2 014 1 Promoter
M Non-coding transcript 3 4 & Enhancer
Intronic o L M Repressed
Upstream of gene a G M Transcription
lDownstrgam of gene < " Low signal
- Intergenic '
High Moderate Low Modifier Promoter Enhancer Repressed Transcription Low signal x
VEP Impact
Eg different consequences of the Or variants that lie in different

mutation on nearby genes types of gene regulatory region.



Partitioned heritability

_ AT T
Y= codz'ngGCOd’ing + BnoncodinanonCOding T €
1 f
y~ N(0,1)
. . | T G N (0, h?
Genetic contribution Genetic contribution coding ¥ coding ™’ ( ’ coding)
of coding variants i : T 2
of coding variants noncodinanOnCOding ~ N(O7 h’noncoding)
2 2
€~ N(O7 1 - h’coding o h’noncoding)



Partitioned heritability

Y — z:)dinchoding T Brr{oncodz‘nanoncoding T+ e
1 f
| y ~ N(0,1)
Genet!c contribution Genetic contribution cTodmchoding ~ N (0, hgodmg)
of coding variants of coding variants T . dingGnoncoding ~ N (0, h2 ding)
e~ N(0,1— h’godz’ng — h’?&oncoding)

We break the heritability down into contributions from each category. We want to
estimate the heritability of each category (h2_coding, h2_noncoding, etc).



Partitioned LD Scores

LD matrix:

rsl rs2 rs3 rs4
codlng (noncodlng) (noncoding) (noncodmg)

0.05
1 0.9 0.85
0.9 1 0.9

0.85 0.9 1




Partitioned LD Scores

<, i
((jsC)= X, rj  Partitioned LD score for

LD matrix: LD scores: keC category C
Coding LD score | Noncoding LD score
codlng (noncodlng) (noncodmg) (noncodmg)
0.05
rs2
1 0.9 0.85
rs3
0.9 1 0.9
rs4
0.85 0.9 1

Partitioned LD scores measure how much each
variant tags different classes of variant.



Partitioned LD Scores

é(j,C) = z r2 Partitioned LD score for

LD matrix: LD scores: keC J category C

Coding LD score | Noncoding LD score

. (noncodlng) (noncodmg) (noncodmg)

172 =1 0.172 +0.05722 + 072 =0.0125
0.05

rs2
1 0.9 0.85

rs3
0.9 1 0.9

rs4
0.85 0.9 1

Partitioned LD scores measure how much each
variant tags different classes of variant.



Partitioned LD Scores |
((j,c)= 3 +2 Partitioned LD score for

LD matrix: LD scores: keC J category C

. (noncodlng) (noncodmg) (noncodmg)

Coding LD score | Noncoding LD score

— 172 = 1 0.172 + 0.05*2 + 072 = 0.0125
rs? 0.172 =0.01 172 + 0.972 + 0.8572 = 2.5325
1 0.9 0.85
0 . 09 rs3 0.0542 =0.00025 0.972 + 172 +0.92=2.62
: : rsd 0r2 =0 0.85722 + 0.972 + 172 = 2.5325
0.85 0.9 1

Partitioned LD scores measure how much each
variant tags different classes of variant.



Partitioned LD Scores

L , -
E(],C) Z rik Partitioned LD score for

LD matrix: LD scores: keC J category C
Coding LD score | Noncoding LD score
codlng (noncodlng) (noncodmg) (noncodmg)
0.05 172 =1 0.172 + 0.05”*2 + 072 = 0.0125
rs2 0.172=0.01 172 + 0.972 + 0.8572 = 2.5325
1 0.9 0.85
09 . 0.9 rs3 0.0542 =0.00025 0.972+172+0.9"2=2.62
' ' rs4 072=0 0.8572 + 0.972 + 172 = 2.5325
0.85 0.9 1

Partitioned LD scores measure how much each
variant tags different classes of variant.

We can now estimate the two different slopes:

N

0(i, coding)— + h

N
M noncodzngg(iv noncoding) — + Na+1

M

X2 = test statistic, N = sample size, M = number of
SNPs, a = confounding

E[x2] = h2

coding



Back to the paper
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transcribed regions.



Running these yourself

* We do not have a practical on LD Score regression, but the LDSC
authors have a number of good tutorials with real, publicly available
data on their wiki:

https://github.com/bulik/Idsc/wiki



https://github.com/bulik/ldsc/wiki
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Swapping out for a new paper

ARTICLES nature
https://doi.org/10.1038/541588-021-00880-5 genetlc S

'.) Check for updates

Fine-mapping, trans-ancestral and genomic
analyses identify causal variants, cells, genes and
drug targets for type 1 diabetes

Catherine C. Robertson©'22° Jamie R. J. Inshaw?®*?°, Suna Onengut-Gumuscu ©'4, Wei-Min Chen'4,
David Flores Santa Cruz3, Hanzhi Yang', Antony J. Cutler @3, Daniel J. M. Crouch?, Emily Farber’,
S. Louis Bridges Jr>¢, Jeffrey C. Edberg’, Robert P. Kimberly’, Jane H. Buckner?, Panos Deloukas ©°1°,
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Aims of fine-mapping
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Aims of fine-mapping
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Maller et al fine-mapping

Maller et al (2012) Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 44(12): 1294-1301



Maller et al fine-mapping

In Maller-style mapping, we assume that there is only one causal variant, and
thus we can consider each variant one-at-a-time:

P(D|C = i)P(C = i)
>.; P(D|C = j3)P(C =)

P(C =i|D) =

Maller et al (2012) Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 44(12): 1294-1301



Maller et al fine-mapping

In Maller-style mapping, we assume that there is only one causal variant, and
thus we can consider each variant one-at-a-time:

P(D|C =) P(C = 1)

Z] P(D‘C — J)P(C — J) Assume P(C=i)is a
BFZ constant for all i

_Zj BFJ'

P(C =i|D) =

Maller et al (2012) Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 44(12): 1294-1301



Maller et al fine-mapping

In Maller-style mapping, we assume that there is only one causal variant, and
thus we can consider each variant one-at-a-time:

P(D|C =) P(C = 1)

Z] P(D‘C — J)P(C — J) Assume P(C=i)is a
BFZ constant for all i

_Zj BFJ'

Where BF is the Bayes factor:

f(Bilp = 0,0% = se? + o)
f(Bilp=0,02 = se?)

Maller et al (2012) Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 44(12): 1294-1301

P(C =i|D) =

BF; =




Maller et al fine-mapping

In Maller-style mapping, we assume that there is only one causal variant, and
thus we can consider each variant one-at-a-time:

P(D|C =) P(C = 1)

Z] P(D‘C — J)P(C — J) Assume P(C=i)is a
BFZ constant for all i

_Zj BFJ'

Where BF is the Bayes factor:

P(C =i|D) =

2 2 2 9 The likelihood of seeing the observed
f(/Bz ‘M — O, O = S@i —+ O'O) < beta_i given a non-zero effect size prior
BFZ — sigma_0

f(/B'L ‘,LL — 07 0-2 — 86?) \ The likelihood of seeing the observed

beta i under the null

Maller et al (2012) Bayesian refinement of association signals for 14
loci in 3 common diseases. Nat Genet. 44(12): 1294-1301
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BF; = -
: f(Bilp = 0,02 = se)
A simple worked example BF
posterior; = -
Zj BE}
S S S
Effect size (beta i) 0.4 0.41
Standard error (se_i) 0.05 0.05 0.1 0.1

f(beta_i | mu =0,
sigma =se’2 +
sigma_072)

f(beta_i | mu =0,
sigma = se”2)

BF_j

Posterior _i



f(Bilp = 0,02 = se? + o)

BF; = — 5
A simpl ked | fon= e e
simple worked example Y

posterior; = —————

Zj BE}
T S N N

Effect size (beta i) 0.41
Standard error (se_i) 0.05 0.05 0.1 0.1
f(beta_i | mu =0, dnorm(0.4,0,sq dnorm(0.41,0,s dnorm(0.3,0,sqrt dnorm(0.1,0,sqgrt(O.
sigma =se 2 + rt(0.0572 + grt(0.0572 + (0.172 +0.272)) 1722+0.272)) =
sigma_0"2) 0.2722))=0.295 0.272))=0.268 =0.725 1.614

f(beta_i | mu =0,
sigma = se”2)

BF i

Posterior _i
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BE; = 3 2 2
A . ‘ k d | f(52|,u:070- 2862-)
simple worked example Y
posterior; = —————
Zj BE}
T S N N
Effect size (beta i) 0.41
Standard error (se_i) 0.05 0.05 0.1 0.1
f(beta_i | mu =0, dnorm(0.4,0,sq dnorm(0.41,0,s dnorm(0.3,0,sqrt dnorm(0.1,0,sqgrt(O.
sigma =se 2 + rt(0.0572 + grt(0.0572 + (0.172 +0.272)) 1722+0.272)) =
sigma_0"2) 0.2722))=0.295 0.272))=0.268 =0.725 1.614
f(beta_i | mu =0, dnorm(0.4,0,sq dnorm(0.42,0,s dnorm(0.3,0,sqrt dnorm(0.1,0,sgrt(O.
sigma = se”2) rt(0.0572)) = grt(0.0572)) =  (0.172)) = 112)) =2.420
1.01e-13 3.80e-15 0.0443
BF |

Posterior _i



f(Bilp = 0,02 = se? + o)

BE; = 3 2 2
A . ‘ k d | f(ﬁzLuZOaO- :Sez’)
simple worked example Y
posterior; = —————
Zj BE}
T S N N
Effect size (beta i) 0.41
Standard error (se_i) 0.05 0.05 0.1 0.1
f(beta_i | mu =0, dnorm(0.4,0,sq dnorm(0.41,0,s dnorm(0.3,0,sqrt dnorm(0.1,0,sqgrt(O.
sigma =se 2 + rt(0.0572 + grt(0.0572 + (0.172 +0.272)) 1722+0.272)) =
sigma_0"2) 0.2722))=0.295 0.272))=0.268 =0.725 1.614
f(beta_i | mu =0, dnorm(0.4,0,sq dnorm(0.42,0,s dnorm(0.3,0,sqrt dnorm(0.1,0,sgrt(O.
sigma = se”2) rt(0.0572)) = grt(0.0572)) =  (0.172)) = 112)) =2.420
1.01e-13 3.80e-15 0.0443
BF i 0.295/1.01e-13 0.243/3.80e-15 0.725/0.0443 =  1.614/2.420 = 0.667
= 2.92el2 = 6.39¢e13 16.37

Posterior _i



A simple worked example

Effect size (beta i)

Standard error (se_i) 0.05

f(beta_i | mu =0, dnorm(0.4,0,sq

sigma =se 2 + rt(0.0572 +

sigma_0"2) 0.272)) = 0.295

f(beta_i | mu =0, dnorm(0.4,0,sq

sigma = se”2) rt(0.0572)) =
1.01e-13

BF i 0.295/1.01e-13
= 2.92e12

Posterior _i

0.41
0.05

dnorm(0.41,0,s
grt(0.0572 +
0.272)) = 0.268

dnorm(0.42,0,s
grt(0.05/2)) =
3.80e-15

0.243/3.80e-15
= 6.39e13

0.1

dnorm(0.3,0,sqgrt
(0.172 + 0.272))
=0.725

dnorm(0.3,0,sqgrt
(0.172)) =
0.0443

0.725/0.0443 =
16.37

f(Bilp = 0,02 = se? + o)

BF, =

posterior; =

S P S S

0.1

dnorm(0.1,0,sqgrt(O.
172 +0.272)) =
1.614
dnorm(0.1,0,sqrt(O.
172)) =2.420

1.614/2.420 = 0.667

f(Bilp = 0,02 = se?)

BF;
Zj BE}

Sum of BFs = 6.682e13



A simple worked example

Effect size (beta i)

Standard error (se_i) 0.05

f(beta_i | mu =0, dnorm(0.4,0,sq

sigma =se 2 + rt(0.0572 +

sigma_0"2) 0.272)) = 0.295

f(beta_i | mu =0, dnorm(0.4,0,sq

sigma = se”2) rt(0.0572)) =
1.01e-13

BF i 0.295/1.01e-13
= 2.92e12

Posterior i 2.92e12/6.39e
13 =0.0457

0.41
0.05

dnorm(0.41,0,s
grt(0.0572 +
0.272)) = 0.268
dnorm(0.42,0,s
grt(0.05/2)) =
3.80e-15

0.243/3.80e-15
= 6.39e13

6.39e13/6.682
el3 =0.956

0.1

dnorm(0.3,0,sqgrt
(0.172 + 0.272))
=0.725

dnorm(0.3,0,sqgrt
(0.172)) =
0.0443

0.725/0.0443 =
16.37

16.37/6.682e13
= 2.45e-13

f(Bilp = 0,02 = se? + o)

BF, =

posterior; =

S P S S

0.1

dnorm(0.1,0,sqgrt(O.
172 + 0.272)) =
1.614
dnorm(0.1,0,sqgrt(O0.
172)) =2.420

1.614/2.420 = 0.667

0.667/6.682e13 =
9.98e-15

f(Bilp = 0,02 = se?)

BF;
Zj BE}

Sum of BFs = 6.682e13



More complex fine-mapping

 There are often more than one causal variant at each locus, and we
want to:
* a) know how many there are

* b) fine-map each causal variant while controlling for possible LD with other
causal variants

* There are multiple techniques for fine-mapping in the presence of
multiple causal variants

* The paper uses GUESSFM, which is robust and well-behaved but requires
access to complete genotype data

* |In the practical, we will use FINEMAP, which works just on summary statistics
(betas, standard errors and an LD matrix).
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The aim is to to calculate the posteriors for all plausible causal configurations.

m m
p() = pi/ ( . ) when )’ 7, = k.
=1

Prior on the causal

configuration

Py, X) = [p(yu..xwmdz

p(Aly) = N0, s26°4.,),

The likelihood, marginalizing
out the effect size

= N'(3|0,02(nR)" + s2a%4,)

~1
m
pi(rly, X) = (k) Pr X pOyly, X),
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“Projects” effects on to

The aim is to to calculate the posteriors for all plausible causal configurations.

m — Prior on the causal 2
p() = pi/ ( k ) when Z ve = k. configuration p(}J}') = N(@l0, S/210 A}')’
£=1

p(yly.X) = [p(yll,.X)p(l|)')d‘~ The likelihood, marginalizing
out the effect size

= N'(3]0,c*(nR)™" + s26%4,)

~1
. [ m The unnormalized
pi(rly, X) = ( k ) Pr X pOly, X), posterior for a given

causal configuration.

Now we just need to calculate this for all possible causal configurations!

tag SNPs in LD with
causal variants

Prior on the effect sizes
conditional on the
causal configuration

BUT For 10 SNPs -> 1024 configurations. 80 SNPs -> more configurations than there are stars in the universe.
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The shotgun stochastic search

Sample a new configuration in the neighborhood
with probability proportional to p*

o SNP SNP
Make some initial guess { 2 3 2 3 :
Keep searching,

1
-1 0 1 o WER score until the sum of all

Current configuration Current configuration saved p*s stops

/s

Search the 1 0| 1 BEIEIE
neighborhood around Delete 0 Y scoe Delete Keep searching,
the guess and Save all the p*s
% 1 v 0| 1 LG
calculate p* for each Change Change asYou go along.
0 v 1| 0 ESleelE
Add 1 v 1| 1 BeecH | Add
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FINEMAP outputs

Bayes factor that there is at least one causal variant
D> vers P * (7]y, X) y

BF(k > O) — (i.e. evidence that there is any association at all)
p(yly =0, X)

Z’YEF*3Z7; vi=Kk D= (7|y7 X) Probability that there are exactly k causal variants
> e P * (7)Y, X)

p(k) =



FINEMAP outputs

ZWEF* p* (’Y|y7 X)

BF(k > 0) =

p(yly =0,X)

ZWEF*;Zi v: =k D * (’7|y7 X)

p(k) =

p(yly, X) = p*(7ly, X) /
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D Py, X).
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Bayes factor that there is at least one causal variant
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Probability that there are exactly k causal variants

Posterior probabilities for all causal configurations in
the search (by default, top 50k configurations are

outputted).



FINEMAP outputs

ZWEF*p * (’Y|y7X)
p(yly =0,X)

ZWEF*;Zi v: =k D * (’7|y7 X)

BF(k > 0) =

p(k) = D vers P * (v]y, X)

yel'*

p(rly, X) = p*(rly, X) / D PO X).

plye =1y, X) = Y 1, = DpQly, X).
Yer'*

Bayes factor that there is at least one causal variant
(i.e. evidence that there is any association at all)

Probability that there are exactly k causal variants

Posterior probabilities for all causal configurations in
the search (by default, top 50k configurations are

outputted).

Posterior probabilities for each variant. Also uses
these to calculate a credible set for each independent
signal.
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Back to the paper

The fine-mapping approach used:

European data.
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Back to the paper

The fine-mapping approach used:

Use GUESSFM to fine-map each region using the

European data.

Loci with exactly one
causal variant

\ 4

Use PAINTOR to combine European and African data to

\ 4

Number of signals (causal
variants) in each locus, and
posterior probability of
causality for each variant.

produce higher resolution posterior probabilities.

NOTE: PAINTOR is fine-mapping software that can
combine data across ancestry groups, but it is
unreliable when there are multiple causal variants.

v

Higher resolution posterior
probabilities of causality for
each variant in certain loci.
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Mapping causal variants using trans-ethnic d
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Studying potential functions of causal variants
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Discussion: following up causal variants

* How would you follow up a high-confidence causal variant in an
experiment?

* How would this differ if you have 10 variant in the credible set,
comparedto 1?



Running these yourself

* Our practical will look at using FINEMAP to carry out fine-mapping using
summary statistics.

 GUESSFM, which was used in the paper, is written in R and comes with some
easy-to-use vignettes (which simulate their own example data):

https://chrilswallace.github.io/GUESSFM/

 We haven’t discussed it at all, but the credible sets we have discussed are
inherently Bayesian estimators. Anna Hutchinson has done some interesting work
on putting Maller-style credible sets into a frequentist framework. Her R package
(corrcoverage) has some well-written vignettes that talk you through this:

https://cran.r-project.org/web/packages/corrcoverage/
* The paper is good too:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007829
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