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GWAS techniques we will cover today

Today we will cover:
• GWAS meta-analysis
• Heritability estimation
• Fine-mapping

We will look at these in the context of two recent(ish) GWAS papers:
- Astle et al (2016) The Allelic Landscape of Human Blood Cell Trait Variation and Links to Common 
Complex Disease. Cell 17;167(5):1415-1429.e19 https://pubmed.ncbi.nlm.nih.gov/27863252/
- Robertson, Inshaw, et al (2021) Fine-mapping, trans-ancestral and genomic analyses identify causal 
variants, cells, genes and drug targets for type 1 diabetes. Nat Genet . 53(7):962-971. 
https://pubmed.ncbi.nlm.nih.gov/34127860/

There will a practical on meta-analysis and fine-mapping, and we will give links to other suggested 
tutorials and vignettes in the slides.

https://pubmed.ncbi.nlm.nih.gov/27863252/
https://pubmed.ncbi.nlm.nih.gov/34127860/
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Meta-analyzing genetic data

• Meta-analysis is a technique for 
combining summary statistics 
across multiple different 
studies.
• You need two bits of data for 

each study, to capture effect 
size precision
• e.g. betas and standard errors, or 

p-values and sample sizes 
• The paper uses the software 

METAL, with settings for Inverse 
Variance Based analysis
• This is more properly called a 

“Fixed Effect Variance Weighted 
Meta-analysis”
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Willer et al (2010) METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics. 26(17): 2190–2191.
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Study 1 Study 2 Study 3
Effect size 0.5 0.2 0.4

Standard error 0.1 0.05 0.2

Z score 0.5/0.1 = 5 0.2/0.05=4 0.4/0.2=2

P-value 2*pnorm(-5) = 5.7e-7 2*pnorm(-4)=6.3e-5 2*pnorm(-2)=0.046

Weight 1/0.1^2 = 100 1/0.05^2=400 1/0.2^2 = 25

Meta-analysis effect size = (0.5*100 + 0.2*400 + 0.4*25)/(525) = 0.267
Meta-analysis standard error = sqrt(1/525) = 0.0436
Meta-analysis Z = 0.267/0.0436 = 6.12
Meta-analysis p = 9.4e-10

Sum of weights = 525



Some things to be keep in mind

• Fixed effect meta-analysis assumes that them true effect size is exactly the 
same in each study. 
• It also requires them to be on the same SCALE
• E.g. meta-analyzing a study measured in kg and one measured in lbs would not work 

as expected – you first need to convert them onto the same scale.
• You can test whether this assumption is violated using a heterogeneity test, 

e.g. the Cochran Q test (implement in most meta-analysis software). 
• There are lots of other options for meta-analysis:

• Random effects meta-analysis: effect size assumed to vary across studies, normally 
distributed with some variance tau^2

• Trans-ethnic meta-analysis: a specific type of random effect meta-analysis designed 
to study genetics across populations (the MANTRA software is an example).

• Meta-regression: designed to answer the question “why do these studies differ?”, by 
including per-study covariates (eg average age, ethnicity, etc).
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Visualizing meta-analysis results: Forest plot

Default forest plotting using R package “meta”:
> forest.meta(metagen(betas,ses))

TE=“Treatment effect”, i.e. effect size
and its standard error

Weights:
1/se^2 for fixed effect
1/(se^2 + tau^2) for random effectsConfidence intervals on 

effect size for each
individual study

Confidence intervals for 
meta-analysed effect size

Measures of study-
to-study variation.



Back to the paper

These are the results of the 
meta-analysis for every SNP and 
every blood trait. Red dots are 
new top hits, green are known 
top hits, and black are variants 
that are in LD with either.
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The authors were worried 
about heterogeneity

TL;DR: The authors tolerate some 
amount of between-study 
heterogeneity, providing it lies 
within plausible bounds.



Running these yourself

• The practical today will cover meta-analysed genome-wide summary 
statistics from two studies, and visualizing them using forest plots.
• The METAL paper (cited earlier in the talk) is also quite short and 

readable, and they also have a Quick Start tutorial that includes 
example data:
https://genome.sph.umich.edu/wiki/METAL_Quick_Start

https://genome.sph.umich.edu/wiki/METAL_Quick_Start


Heritability estimation



A lot of figures involve heritability, variance 
explained, R2, etc
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The broad-sense heritability

Actual phenotype

Best genetic prediction 
of phenotype based on 
genome (G)

environment

The squared correlation between the best possible 
genetic predictor and the real phenotype is the 
broad sense heritability, H2:

The broad sense heritability is a measure of the 
totality of genetic effects. It is mostly theoretical, 
though it is (in theory) equal to the correlation in 
phenotype of identical twins raised apart.
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The narrow-sense heritability

Actual phenotype

Best LINEAR genetic 
prediction of phenotype 
based on genome (G)

Environment plus non-linear 
genetics

The squared correlation between the best possible 
linear genetic predictor and the real phenotype is 
the narrow sense heritability, h2:

The narrow sense heritability is the extent 
to which genetics ‘breeds true’, i.e. is passed 
down in families i.e. where the correlation 
in phenotype is proportional to relatedness.



The SNP-heritability
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Best linear genetic 
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based on the set of snps
that are in the study (G_snp)
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The squared correlation between the best possible 
linear genetic predictor using the snps in your study 
and the real phenotype is the NNP heritability,
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The SNP-heritability

Actual phenotype

Best linear genetic prediction 
of phenotype based on the 
set of snps that are in the
study (G_snp)

Environment, non-linear genetics, 
snps not in the study

The squared correlation between the best possible 
linear genetic predictor using the snps in your study 
and the real phenotype is the NNP heritability,
h2_snp:The SNP heritability measured the total narrow-sense heritability 

captured, i.e. the “variance explained”, by the variants you have 
studied. In a GWAS, this usually means “captured by common 
variants”. This gives a lower bound for the narrow-sense heritability.
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Estimating the SNP heritability using a 
polygenic risk score

Estimate a polygenic risk 
score, by trying to estimate 
the effect sizes (beta^hat): 

And test how well that 
correlates with the 
phenotype in an 
external replication 
dataset. Square it and 
you get the “variance 
explained by the PRS”:

But this will be less than 
the true SNP heritability, 
as inaccuracy in beta^hat
introduces error and 
reduces the correlation.

Crude method: estimate betas for 
genome-wide significant hits and set beta 
= 0 for everything else.
More sophisticated methods: use a lasso 
or a Bayesian prior to shrink effect sizes 
genome-wide.



LD Score Regression – a better way of 
estimating SNP heritability
• We would like to measure the total amount of signal in the GWAS (eg

by average p-value or chi-square statistic). 

• But this can be driven by real signal or population stratification

Bulik-Sullivan et al (2015) LD Score regression distinguishes 

confounding from polygenicity in genome-wide association 

studies. Nature Genetics 47, 291–295
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Population stratification
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Bulik-Sullivan et al (2015) LD Score regression distinguishes 
confounding from polygenicity in genome-wide association 
studies. Nature Genetics 47, 291–295
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rs1 1 0.1 0.05 0
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LD matrix:
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rs3 0.05^2+0.9^2+1^2+0.9^2 = 2.6225

rs4 0^2+0.85^2+0.9^2 + 1^2 = 2.5325

LD scores:

LD scores measure how much potential each variant has for tagging causal variants. 
The higher the LD score, the more true signal we expect it to tag, and the larger we 

expect it’s test statistic (or the smaller we expect its p-value) to be. 

But more than that – the higher the heritability, the larger the slope 
between LD score and test statistic:

Small LD score, only 
tags itself and no 
other causal variants

Large LD score, tags 
itself and two other 
causal variants.

χ2 = test statistic, N = sample size, M = number of 
SNPs, a = confounding



LD Score Regression – a better way of 
estimating SNP heritability
• We would like to measure the total amount of signal in the GWAS (eg

by average p-value or chi-square statistic). 
• But this can be driven by real signal or population stratification

Population stratification
Real signal

h2_snp = 0% h2_snp = 33%



Back to the paper

This is h^2_prs

This is h^2_snp

SNP heritability ranges from 
5-30%. Polygenic risk scores 
(based on significant 
associations) capture a lot, 
but far from all, of this. 
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Partitioned heritability
• Often we are interested in how much heritability is explained by 

different type of variants:

Eg different consequences of the 
mutation on nearby genes

Or variants that lie in different 
types of gene regulatory region.
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Partitioned heritability

Genetic contribution 
of coding variants

Genetic contribution 
of coding variants

We break the heritability down into contributions from each category. We want to 
estimate the heritability of each category (h2_coding, h2_noncoding, etc).
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rs1
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rs2
(noncoding)

rs3
(noncoding)

rs4
(noncoding)

rs1 1 0.1 0.05 0

rs2 0.1 1 0.9 0.85

rs3 0.05 0.9 1 0.9

rs4 0 0.85 0.9 1

LD matrix:

Variant Coding LD score Noncoding LD score
rs1 1^2 = 1 0.1^2 + 0.05^2 + 0^2 = 0.0125

rs2 0.1^2 = 0.01 1^2 + 0.9^2 + 0.85^2 = 2.5325

rs3 0.05^2 = 0.00025 0.9^2 + 1^2 + 0.9^2 = 2.62

rs4 0^2 = 0 0.85^2 + 0.9^2 + 1^2 = 2.5325

LD scores:

We can now estimate the two different slopes:

χ2 = test statistic, N = sample size, M = number of 
SNPs, a = confounding

Partitioned LD score for 
category C

Partitioned LD scores measure how much each 
variant tags different classes of variant.
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Back to the paper

Most of the heritability in blood traits is 
driving by intronic variation and by variants in enhancers and 

transcribed regions.



Running these yourself

• We do not have a practical on LD Score regression, but the LDSC 
authors have a number of good tutorials with real, publicly available 
data on their wiki:

https://github.com/bulik/ldsc/wiki

https://github.com/bulik/ldsc/wiki


Fine-mapping



Swapping out for a new paper
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Aims of fine-mapping

1. Identify the number of independent 
signals (i.e. the number of causal 
variants) in the region.

2. Identify the candidates for the actual 
causal variant for each signal.

3. Identify possible functions of these
causal variants



Maller et al fine-mapping

Maller et al (2012) Bayesian refinement of association signals for 14 
loci in 3 common diseases. Nat Genet. 44(12): 1294–1301
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Where BF is the Bayes factor:

In Maller-style mapping, we assume that there is only one causal variant, and 
thus we can consider each variant one-at-a-time:

Maller et al (2012) Bayesian refinement of association signals for 14 
loci in 3 common diseases. Nat Genet. 44(12): 1294–1301



Maller et al fine-mapping

Assume P(C = i) is a 

constant for all i
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A note on credible sets: Rank the SNPs by 
posterior, and go down the list adding them 
up. When you go over 95%, that is your 95% 
credible set. There is at least a 95% chance 
that the true causal variant is in this set.

Variant Posterior Cumsum
rs2 0.65 0.65
rs3 0.25 0.90
rs1 0.06 0.96
rs4 0.02 0.98
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More complex fine-mapping

• There are often more than one causal variant at each locus, and we 
want to:
• a) know how many there are 
• b) fine-map each causal variant while controlling for possible LD with other 

causal variants

• There are multiple techniques for fine-mapping in the presence of 
multiple causal variants
• The paper uses GUESSFM, which is robust and well-behaved but requires 

access to complete genotype data
• In the practical, we will use FINEMAP, which works just on summary statistics 

(betas, standard errors and an LD matrix). 
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How FINEMAP 
works

“Projects” effects on to 
tag SNPs in LD with 
causal variantsThe aim is to to calculate the posteriors for all plausible causal configurations.

Prior on the causal 
configuration

Prior on the effect sizes 
conditional on the 
causal configuration

The likelihood, marginalizing 
out the effect size

The unnormalized 
posterior for a given 
causal configuration.

Now we just need to calculate this for all possible causal configurations!
BUT For 10 SNPs -> 1024 configurations. 80 SNPs -> more configurations than there are stars in the universe. 
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The shotgun stochastic search

Make some initial guess

Search the 
neighborhood around 
the guess and 
calculate p* for each

Sample a new configuration in the neighborhood 
with probability proportional to p*

Keep searching, 
Save all the p*s 
as you go along. 

Keep searching, 
until the sum of all 
saved p*s stops 
increasing.
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FINEMAP outputs
Bayes factor that there is at least one causal variant 
(i.e. evidence that there is any association at all)

Probability that there are exactly k causal variants

Posterior probabilities for all causal configurations in 
the search (by default, top 50k configurations are 
outputted).

Posterior probabilities for each variant. Also uses 
these to calculate a credible set for each independent 
signal.
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The fine-mapping approach used:
Number of signals (causal 
variants) in each locus, and
posterior probability of 
causality for each variant. 

Loci with exactly one 
causal variant

Higher resolution posterior 
probabilities of causality for 
each variant in certain loci. 

NOTE: PAINTOR is fine-mapping software that can 
combine data across ancestry groups, but it is 
unreliable when there are multiple causal variants.
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Identifying the number of 
causal variants at each locus

For JAZF1, GLIS3 and 
RNLS loci, the algorithm 
thinks there is only one
causal variant.

For CCBL/IKZF1, it thinks 
there are two (high
certainty).

For IL2RA it thinks there 
are seven, though some 
are lower confidence 
(50-75%).

Guess FM output – all signals with posterior > 0.5.
Note difference between SIGNAL posterior and VARIANT posterior
Signal posterior == probability that there is an association here
Variant posterior = probability that this variant is a causal variant



Mapping causal variants using trans-ethnic data



Studying potential functions of causal variants



Discussion: following up causal variants

• How would you follow up a high-confidence causal variant in an
experiment?
• How would this differ if you have 10 variant in the credible set, 

compared to 1?



Running these yourself

• Our practical will look at using FINEMAP to carry out fine-mapping using 
summary statistics.
• GUESSFM, which was used in the paper, is written in R and comes with some 

easy-to-use vignettes (which simulate their own example data):
https://chr1swallace.github.io/GUESSFM/
• We haven’t discussed it at all, but the credible sets we have discussed are

inherently Bayesian estimators. Anna Hutchinson has done some interesting work 
on putting Maller-style credible sets into a frequentist framework. Her R package
(corrcoverage) has some well-written vignettes that talk you through this:

https://cran.r-project.org/web/packages/corrcoverage/
• The paper is good too:
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007829

https://chr1swallace.github.io/GUESSFM/
https://cran.r-project.org/web/packages/corrcoverage/
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007829

