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Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a hypothesis-
free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of GWAS,
including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide association
studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and pathway
analyses, and the concept of causal variants.
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Maybe we haven’t found them all -
how could we find more?



Remember the formula
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GWAS revolution
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Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019

NHGRI GWAS Catalog: https://www.ebi.ac.uk/gwas/
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Inflammatory bowel disease
(Crohn’s disease and ulcerative colitis)
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> 600 association signals.
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Abstract citation ID: jjad212.0008
OPO08

Multi-ancestry genome-wide association study of inflammatory bowel disease identifies 125 novel loci

and directly implicates new genes in disease susceptibility

L. Fachal!, on behalf of the International IBD Genetics Consortium
"Wellcome Sanger Institute, Human Genetics, Hinxton- Saffron Walden, United Kingdom




Type 2 diabetes
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Fig. 5 | The relationship between effect size and MAF. Conditional- and
joint-analysis effect size (y axis) and MAF (x axis) for 403 conditionally
independent SNPs. Previously reported T2D-associated variants are shown
in green, and novel variants are shown in purple. Stars and circles represent
the ‘strongest regional lead at a locus' and 'lead variants for secondary
signals’, respectively.

nature ARTICLES
genetlc S https://doi.org/10.1038/541588-018-0241-6

Fine-mapping type 2 diabetes loci to single-variant
resolution using high-density imputation and
islet-specific epigenome maps
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GWAS of human height

In 5.4 million individuals
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Comparing across traits

Trait category
Neurological

® Anthropometric

A Immune-related

¢ Metabolic
Hematopoietic

Average

effect size
(normalized so no
longer on log OR

scale)

1076 10-° 1074 1078 1072

Fraction of SNPs that are associated
(out of 1.1 million HapMap SNPs)

ARTICLE

Large-scale genome-wide enrichment analyses

identify new trait-associated genes and pathways
across 31 human phenotypes

Xiang Zhu 2 & Matthew Stephens 23

With all this data it’s
possible to fit more
sophisticated models that
estimate the amount of
polygenicity across traits.



Common variant, common disease hypothesis
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How are these studies possible?
Consortia and meta-analysis



Consolidation question from last lecture

MMEL1(TNFRSF14
EVI5

VCAM1

CD58

RGS1
C1orf106(KIF21B)
No gene

PLEK

MERTK

SP140

EOMES

No gene

CBLB
TMEMB39A(CD80)
CD86

IL12A
NFKB1(MANBA)
IL7R

PTGER4

IL12B

BACH2
THEMIS
MYB(AHI1)
IL22RA2

No gene
TAGAP
ZNF746

L7

Myc

PVT1

IL2RA

ZMIZ1

HHEX

CDé6

CXCR5
TNFRSF1A
CLECL1
CYP27B1
ARL6IP4
ZFP36L1

WTCCC2 GWAS of multiple sclerosis (9,772 cases and 7,376 controls).

For further information about terms used below, hover
over the red question marks.

Region

dbSNP id:’ 1511581062

status:’ novel association

physical position:” 01:101,180,107

association region:? 01:100,983,315-101,455,310
functional tag:*  N/A

nearest gene:’ SLC30A7

candidate gene:*  VCAMI#*

Signal

p-value discovery:’ 3.7e-10

OR discovery (95% CD):* 1.13 (1.09-1.18)
p-value replication:’ 4.20e-02 (one-sided)
OR replication (95% CI):* 1.07 (0.99-1.15)
p-value combined:” 2.50e-10

OR combined (95% CI):* 1.12(1.1-1.13)
Risk (non-risk) allele: G(A)

Allele frequencies’

Country controls / cases control / case frequency
Australia - /647 -/032
Belgium -/544 -/033
Denmark -1332 -/032
Finland 2165/ 581 023/024
France 347/ 479 031/034
Germany 1699 / 1100 0.29/0.31
Ireland -/61 -/034
Ttaly 571/745 030/0.33
Norway 121/953 026/028
Poland -/58 -1027
Spain - 1205 -/036
Sweden 1928/ 685 027/028
UK 5175/ 1854 029/032
USA 5370/ 1382 0.29/0.32

Proximal genes’

DPH5, EXTL2, SIPRI, SLC30A7, VCAM1*

-log10(p-value)
5

80 120

Recombination cM/Mb
40

chr1 rs11581062

gx1iz
SLC}OA7

3 G
MSCCC2

Can you explain?



http://www.well.ox.ac.uk/wtccc2/ms/

Consortia and meta-analysis

To generate such large sample sizes for “common” (but still relatively rare )
diseases, requires setting up large multi-centre collaborations. This is fun to be
involved in but comes with its own analysis challenges....



Dealing with population structure
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Dealing with population structure

# cases /

# controls This study suffered from a key
Per country

problem. Can you see what it is?

1,382 U
5,370
N

\Ng A\

pY

Finland

Sweden

Norway . . .
Denmark Case-control sampling is correlated with
UK genome-wide genetic variation.

S

Poland

Ireland

USA

France

Spain
Italy G Population
g . structure

First two “principal components” obtained “Confounding by N

purely from the genotypes population structure” Case/ control
sampling
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Population structure: solutions

Instead of simple 2x2 table

1. Regression including principal
components

outcome ~ genotype + PCs

/

Finland
Sweden
Norway
Denmark
Australia
Nz

UK
Germany
Belgium
Poland
Ireland
USA
France
Spain
Italy

|
|
-
|
-
=
=
L
|
=
m
|
L

Controls

Plot of first two principal components obtained
from the genome-wide genotypes

Uses just the strongest directions of variation in
relatedness (population structure)

2. Linear mixed model

outcome ~ genotype +

Include a genetic relatedness matrix computed from
genome-wide genotypes in the association test

Uses the entire matrix of relationships

MS study

Most p-values are now not inflated



Anatomy of an association analysis

All GWAS should report data in a way that can be re-used by future studies.

This study used several previous GWAS to conduct replication. All the details are given in a
supplementary table:

WAS + replicatio - combined replication [ icaticp icatige icatid ANZ replication BWH replication|

OR OR OoRrR OR
(95%_ esFa pval*_ (95% pval*_ (95% pval*_ (95%
Gene| V| llel v pvall | CLV|cto™¥ pval* v | OR(95% C\v| *v| civ| infv| *v| cav| infv| #v| c1v inf i

013 1.18 (0 0.91) 0.57 0.99 (0 1.01] 0.095 1.09(0C O

9 8

1.
 80E- X 0.59 0
SLC30A7 G 2.506-10 1.12 (4 3.706-10 1.13 (1 7.43] 0.00047 1.16 (4 1.70E-07 1.13 ( 0.570.99 (0 1.01] 0.095 1.09 (¢ 0.99] 0.

 MMEL1 C 00E-14 1.14 (¥ 3.10E-14 1.16 (1 11.39 0.0073 1.12 ( 7.10E-13 1.17 ( 0.0085 1.08 (1.01-1.15) 0.26 1.1 (0.. 0.94] 0.18 1.1 (0. 1.01}] 0.24 1.11 (0 1.03j 0.006 1.15 (1 1 0.41 1.02 (C
b EVI A 80E-15 1.1 6,50E-12 1,15 (1 9.1 2.90E-05 1.2 (1,1 2.70E-08 1.14 1.00E-04 1.14(1.06-1.22 0.088 1,23 (0 1.0 9097(0 0911 0.71 092 (0 0.948 0,023 1,12 (1 0,970 0.0059
OE-0 0 08 (1.0 0.0 0

Discovery and overall Evidence for the same ..and in the ...and in most of the individual
data as on web page effect direction was seen combined replication studies.
separately in both arms replication...

of the discovery...

This is a common analysis approach: to gain sample size, use meta-analysis to combine results
across several component studies. Then look for consistency between the studies.

1 Bi
Vimeta = 1/ — ﬁmeta = — | X Vieta (Where v denotes squared standard error)
Vi — VU;
i i

” Inverse variance weighted fixed-effect meta-analysis‘, gives results approximately equal to joint analysis of genotype data.



We now have thousands of GWAS signals across thousands of
traits. What do they teach us about the underlying biology?

CD hit region, chromosome 5
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The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...
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The circle of genetic causation
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The circle of genetic causation

...passing on DNA, with
mutations and

recombination, to new .
...whose success is affected

generations. . by the traits they have...
é,—
...that gets physically
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There is
complex biology
at all stages

/ ...that combine to make
individuals...

...that affect how the cells
behave, forming different
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...inside cells, where it is
transcribed to form proteins
and other molecules...




The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new

generations ...whose success is affected

by the traits they have...
é,—

microarrays,
genome sequencing

Clinical phenotype
measurements

...that gets physically
packaged up into

chromosomes... )
There is complex

biology at all stages

Biomarker
) measurements
And we can measure it.
Chromatin state
marker assays,
ChiP-seq, ...
RINRoEg), ...that combine to make
spectroscopy, antibody .. |
binding individuals...
S

...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




Gaining biological knowledge from GWAS

There are several ways we can try to translate knowledge of associations
Into new biological insights. | will try to describe a few of these.

Fine-mapping — can we identify the actual causal variants underlying these
associations, and hence discover specific proteins and disease pathways?

Pathway analysis — even if we can’t fine-map, we can still try to assess
whether associations group into particular biological pathways that might
shed light on biology

Pleiotropy — how are associations shared between traits?



The circle of genetic causation

Example 1: a pathway analysis

/ ...that combine to make
individuals...




Pathway analysis

Pathway analyses and gene enrichment analysis seek to determine whether
there is a statistical tendency for association signals to fall into known groups
of related genes. These can be

- Known biological pathways (functional networks of proteins and molecules,
performing known specific biological functions) — such as those available
from the KEGG and Reactome databases

- More general classifications of genes by function, such as those from the
Gene Ontology Project

A slightly different direction is to try to group signals by genome function — for
example, do they lie in exons? Or gene promoters? Or in regulatory regions
active in particular cells?

https://www.genome.jp/kegg/ https://reactome.org http://geneontology.org



Pathway analysis example

The primary cause of MS has typically been thought to be inflammation causing
downstream neurodegeneration — with some debate about this. Can the GWAS of MS we
discussed shed light on this?

Clinical and Experimental Neuroimmunology 1 (2010) 2-11

o~
oo

rs11581062* REVIEW ARTICLE

What drives disease in multiple sclerosis: Inflammation or
neurodegeneration?

Hans Lassmann

1512466022 X No gene
rs7595037 X PLEK
rs17174870 MERTK
110201872 SP140
rs11129295 EOMES
rs669607 No gene

Center for Brain Research, Medical University of Vienna, Vienna, Austria

o1 o000 i 000

rs9282641* CD86

rs228614 NFKB1(MANBA)

rs2546890 iL128
rs12212193 BACH2
rs802734 THEMIS
rs11154801 MYB(AHI1)
rs17066096 IL22RA2

As the main figure shows, many of the
association signals looked like they were near
Immune-system related genes.

rs1738074 TAGAP
rs354033 ZNF746

rs4410871 myc
rs2019960 PVT1

rs7923837 HHEX

PAOWAACNRANOWRN 2AINONAN=202®~NLOENOG

rs630923 CXCR5

%

rs10466829 ? CLECL1

rs4902647 ZFP36L1
rs2300603 BATF
rs2119704 GALC(GPRe65)
rs2744148 SOox8

rs180515 RPS6KB1
rs7238078 MALT1
rs1077667 TNFSF14

N - s
ONON S0 s we 8o

rs874628 MPV17L2(IL12RB1)
rs2303759 DKKL1(CD37)

rs2248359 CYP24A1
rs6062314 TNFRSF6B
152283792 H i MAPK1
rs140522 : & ¢ sco2

www.well.ox.ac.uk/wtccc2/ms/



Pathway analysis example

We:

» Assigned SNPs to their nearest gene using the available annotation
« Used the Gene Ontology Project to classify genes into functionally related groups
« Conducted a statistical test (Fisher’s exact test) to identify whether the nearest genes

were enriched in each group.

Particularly strong enrichment was
observed for immune system pathways
— notably in “T cell activation and
proliferation” (P=1.9x10-9)

“‘Although GO immune system genes only account
for 7% of human genes, in 30% of our association
regions the nearest gene to the lead SNP is an
immune system gene”

T, cell
Published: 10 August 2011

Geneticrisk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis

T2 cell

The International Multiple Sclerosis Genetics Consortium & The Wellcome Trust Case Control Consortium

T-helper-cell differentiation pathway .
(from Ingenuity Pathway Analysis software)

www.well.ox.ac.uk/wtccc2/ms/



Fine-mapping

“Fine-mapping” is the general term used for attempts to narrow down
association signals to the underlying causal variants. A typical process
iInvolves:

« Gathering complete information on genetic variation in the region of interest
— for example by deep-sequencing a large number of individuals. (Large
databases such as gnomAD / TopMed now make this easier.)

« Gathering information on genome function — including gene structure and
regulatory regions.

« Potentially leveraging data from different ancestral backgrounds, hoping that
differences in LD patterns will help narrow down signals.

« Fitting models that attempt to parse apart multiple associations in the same
region

Possible underlying mechanisms are pretty diverse and a healthy dose of
genomic detective work is often needed.



The circle of genetic causation

Fine-mapping example 1
Complex genetic variation

/ ...that combine to make
individuals...




Plasmodium falciparum humans



GWAS of susceptibility to severe malaria

Study samples Whole-genome sequences
Group Cases Controls TOTAL Group Trios Duos Other TOTAL

Africa ® Gambia

B Gambia 2567 2605 5172 FULA 31 100
W Mali 274 183 457 X A\ JOLA 32 100
W Burkina Faso 733 596 1329 = : MANDINKA 33 100
B Ghana 399 320 719 WOLLOF 32 98

W Nigeria 113 22 135 . @ Burkina Faso

B Cameroon 592 685 1277 MOSSI 0 57

B Malawi 1182 1317 2499 @ Cameroon

W Tanzania 416 403 819 ‘ ) BANTU 5 31
Kenya 1681 1615 3296 ] o N SEMIBANTU 8 7 32

Asia ’ ® Tanzania

m Vietnam 718 546 1264 -, CHAGGA 21 80

Oceania PARE 22 7 77
PNG 402 374 776 WASAAMBA 23 90

GWAS in 17,000 severe malaria cases and population controls + whole-genome sequences
From 12 sites in Africa, Oceania, and SE Asia. for imputation
Genotyped on the lllumina Omni 2.5M array

Malaria Genomic Epidemiology Network. “Insights into malaria susceptibility using genome-wide data
on 17,000 individuals from Africa, Asia and Oceania”.
Nature Communications (2019). https://doi.org/10.1038/541467-019-13480-2

Malaria www.malariagen.net
GENOMIC EPIDEMIOLOGY NETWORK



https://doi.org/10.1038/s41467-019-13480-z

Natural resistance is driven by red blood
cell variation
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Natural resistance is driven by red blood
cell variation

New signals - Known associations at O
discovered by GWAS g A blood group and sickle trait
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log10(BFayg)

SNPs on chromosome 4 are associated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
€T 2,984 Kenyans
0 - MalariaGEN, Nature 2015
<
m N ]
N _.
™ Q.’
o 3
-+—1 FREMS3
F—+Ht GAB1 HGYPB
im USP38 im SMARCA5H GYPE HGYPA fi-
144.0Mb 144.5Mb 145.0Mb 145.5Mb

Chromosome 4



The association has quite large effect

Gambia
Malawi
Kenya

Combined discovery

Gambia - -
Mali
BurkinaFaso
Ghana
Cameroon
Malawi
Tanzania
Kenya

Combined replication

Meta-analysis ¢  P=9.5x101"
OR=0.67 (0.6-0.76)

> 30% protective effect per copy of the derived allele
1
INX (1 =) x (1 - ¢)

Standard error(log OR) =



Can we finemap?

We had an exciting association. But fine-mapping has proven
to be difficult for many GWAS loci.

To hope for success we might need:

- Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?



log10(BFayg)

SNPs on chromosome 4 are associlated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
T 2,984 Kenyans
0 MalariaGEN, Nature 2015
v b L J
m | ]
N _.
™ 0.‘
(@) 3
tH— FREVI3
—Ht GAB1 HGYPB
i USP38 i SMARCASH GYPE HGYPA -

Glycophorins!

144.0Mb 144.5Mb 145.0Mb 145.5Mb



Glycophorins encode the ‘'MNS’ blood group

(antigenic molecules on RBC surface)
Glycophorins

Band 3 Glycophorin B

Outside red blood
cell

Red blood cell
membrane

Adducin Intracellular

Inside red blood
cell

Grimes and Slater, The Inherited Metabolic Diseases, 1994



Glycophorins are receptors for P.falciparum
during red blood cell invasion

P. Falciparum parasite

P. falciparum membrane

Erythrocyte membrane

red blood cell

Miller et al, J. Exp. Med 1979 Tolia et al, Cell 2005

Glycophorin A



Can we finemap?

We had an exciting association. But fine-mapping has proven
to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?
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We had an exciting association. But fine-mapping has proven
to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?



Structural variants create deletions,
duplications, and hybrid genes

The MNS blood
group is highly
diverse, with over 45
known antigens.

Encoded by single
nucleotide
polymorphisms and

structural variants >@:-F )g:_;_‘

A-B 2 B-A-8
Deleted / S — _.__é%_s__ I . %

duplicated / hybrid *_&%;A:\_B_ .
e+
geneS FIG lRl‘ 2. Schematic re epre

Sentation of homolge NA oot _ b echanism



Can we finemap?

We had an exciting association. But fine-mapping has proven
to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
¥ - Good candidates for the causal mutation(s)?



Steps to fine-map

Step 1: type or sequence as much of the genetic
variation in the region as possible — hope to catch the
causal mutation.

Step 2: re-analyse the association.

Step 3: look for functional mutations



A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase Il reference panel
- plus our newly-sequenced samples

a
Whole-genome sequences
group trios duos other TOTAL

® Gambia

...to call SNPs and indels and
structural variation.

MANDINKA
WOLLOF

@ Burkina Faso
MOSSI

@ Cameroon
BANTU
SEMIBANTU

@ Tanzania
CHAGGA
PARE
WASAAMBA 23

@ PN o w o =R

Sequencing

depth

(this sample has a deletion in this region)



A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase Il reference panel
- plus our newly-sequenced samples

a
Whole-genome sequences
group trios duos other TOTAL

® Gambia

...to call SNPs and indels and
structural variation.

@ Burkina Faso
MOSSI

@ Cameroon
BANTU
SEMIBANTU

@ Tanzania
CHAGGA
PARE
WASAAMBA 23

@ PN o w o =R

Sequencing

depth

(this sample has a deletion in this region) _
...our method infers the copy number



The region turned out to have a lot of structural variation

Deletions Duplications
DEL1 -
DEL2
DEL3
DL
ous RN

DEL6

-:_pq._.-_--'_;- e

- - - - == - . - -
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DEL7
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14% of Africans carry a CNV affecting these genes



The region turned out to have a lot of structural variation

Deletions Duplications

DEL1 DUP1

deleted

DEL2 Ll duplicated - - S DUP?2
B triplicated T

DEL3 DUP3

DEL4 DUP4

DELS ,,,_._,,,.,..,‘-_4_. J 3 __,,..__-..,._F.| . o 5 T RO A Pl DUPS

I‘ -
A

TReRs ISRt Al met et T

DEL6 DUP6

DEL7 gl DUP7/

DELS | W OWS| DUPS

SRR [ Y P R

N e s S
G mg— 1z MG g 2

14% of Africans carry a CNV affecting these genes



Before fine-mapping
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Original GWAS result



After fine-mapping

© Previous top SNP
L0 L) ®
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% < - y o oones © ° °
LL ° °® ® e % .o
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Result after incorporating genetic variation discovered in sequenced samples.



After fine-mapping

© - Previous top SNP DUP4
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Confirming structural variants using cluster plots

microarray intensities

This is how a microarray
cluster plot should look: 3
clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Actually this signal was evident in our cluster plots

microarray intensities

This is how a microarray What we saw in this region
cluster plot should look: 3

clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Still true that nothing seemed to be functional.
What next?

Protective: relative risk ~ 0.6

microarray intensities

Not
protective:
RR ~0

f’ g

This is how a microarray
cluster plot should look: 3
clusters for AA/AB / BB
genotypes

What we saw in this region



Confirming structural variants using cluster plots

Omni 2.5M
intensities

/ duplicated

(-
deleted

|H1—*| GYPB

We were able to use cluster plots to confirm individuals in our
GWAS really do carry the complicated structural variant “DUP4”.

DUP4 is pretty complicated — what could it be?



What is DUP4?

“Normal” haplotype:

GYPE GYPB GYPA

—i—%

Human red blood cell

Leffler et al, “Resistance to malaria through structural variation of
red blood cell invasion receptors”, Science (2017)

https://doi.org/10.1126/science.aam6393



https://doi.org/10.1126/science.aam6393

What is DUP4?

“Normal” haplotype:

GYPE GYPB GYPA
N
» N
N
~
N
N
N
N

DUP4 haplotype: E

GYPE GYPE Dantuhybnd  Dantu hybnid GYPA i
o : T T T 1

T Human red blood cell
200 kb 300 kb 400 kb 500 kb 600 kb

Leffler et al, “Resistance to malaria through structural variation of
red blood cell invasion receptors”, Science (2017)

https://doi.org/10.1126/science.aam6393

Article

Red blood cell tension protects against
severe malariainthe Dantublood group

Functional followup study

Published online: 16 September 2020

https://doi.org/10.1038/s41586-020-2726-6


https://doi.org/10.1126/science.aam6393

Dantu is globally rare...

The Dantu blood group has been found in:

1in 44,112 Londoners®
0in 1,000 GermansT
1in 320 African AmericansT

0in 2870 Gambians?



...but found at high frequency in east Africa

The Dantu blood group has been found in:

1in 44,112 Londoners”

0in 1,000 GermansT

1in 320 African AmericansT
0in 2870 Gambians?

1in 12 Malawians*

1in6 Kenyans (from the Kilifi region)*

' Malawi Tanzania Kenya
Allele frequency: Gambia BurkinaFaso Ghana  Cameroon |:| |:|

East Africa

West Africa



The circle of genetic causation

Fine-mapping example 2
Cell-specific gene regulation

/ ...that combine to make
individuals...




Natural resistance is driven by red blood
cell variation
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Position in genome




Evidence for association
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Association near 2" exon of ATP2B4

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb

T T T
r¢=01 D'l <=0.5 rs4951377:203658471:A:G ® Imputed varignt
701! D> 05 & O + Omni 2.5M variant
r#>031 D' >086 A Sequenom-typed variant
5>05, D> 07 o Imputed SV |

®r>07! < |D]>08 !
®r>09 i e |D'>09

|

i aTP2e

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb
Position on chromosome 01

The associated SNPs cover a region around the second exon.
None of these SNPs make changes to the protein.
What could be going on?

“Canonical”
gene model for
ATP2B4

ATP2B4 = a red
cell “calcium

pump”



Cartoon of a gene

———
Messenger RNA: e - /
e -

Transcription to mRNA

Direction of transcription

@;-—I—I—-

T

Introns (these get spliced out of the RNA)



Cartoon of a gene

———
Messenger RNA: e - /
e -

Transcription to mRNA
Direction of transcription
—

- E_—a—I1—
\

The promoter region.

If the DNA is accessible here,
transcription factors will bind and
help to ‘turn on’ transcription



Two ways to look at transcription

Q RNA polymerase

Long-range regulatory elements Promoters 2 N2 N .
(enhancers, repressors/silencers, insulators) Transcripts Can IOOk a.t Chromatln

state

RNA expression

SEROADMAP
EpIgenomics

PROJECT




ATP2B4 is widely expressed...

1st exon

L
g

2nd exon

I.I
il

Chromatin states in 130 cell types
A

Data from ENCODE / Roadmap

Malaria-associated region



...but shows chromatin differences in RBCs

1st exon 2nd exon

Chromatin states in 130 cell types
A

Proerythrob|asts [

Data from Xu et al Dev Cell (2012) Malaria-associated region



ATP2B4 is widely expressed...

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

GENCODE v189 L —————
transcripts = direction of transcription

ESC’
ES-deriv’
Epithelial'

HSC & B-cell’
Blood & T-ceil’
Neurosph'
Heart’

Cther?’

Brain'
Digestive'
Muscle’
Thymus'
ENCODEZ2012 (except K562)'
K562!

e i

1l
1 - Il
I (111
(- -]
i

|
|

B Y

- At a1
[ P |
. |...ﬂ&|..‘l||‘_.|.l._..n_u.4”uu””

VLERLELR
i)

rl

|
L

Non-erythroid
cells (i.e. no red
blood cells)



ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

GENCODE v189
transcripts = direction of transcription

ESC’
ES-deriv’
Epithelial'

HSC & B-cell’
Blood & T-ceil’
Neurosph'
Heart’

Cther?’

Brain'
Digestive'
Muscle’
Thymus'
ENCODEZ2012 (except K562)'
K562!

|
|

e i

(11

- _ il

B T

Mt

e e

- b 1]

i - — M

e il sl il
I i

=] Mim
i il o ]
R [ sinas]
— i e ]
al il if
e (™9
e frunci®)

e
q |

proerythroblast?

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast?
Fetal liver erythroblast®

10811

Red cells do not have nuclei, so to capture

MRNA expression in red cells, these studies
Erythroid cells show a different experimentally differentiated stem cells into
expression pattern. the erythroid lineage, and measured

transcription before enucleation.



ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

ESC'
ES-deriv?
Epithelial'

HSC & B-cell’
Blood & T-cell’
Neurosph'
Heart'

Other!

Brain’
Digestive'
Muscle’
Thymus'
ENCODEZ012 (except K562)'
K562’

proerythroblast®

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast®
Fetal liver erythroblast®

e

(11

| - Ilim
[ B (11
[ Ml

i L ma e
- A 1]
T wan il
e il ksl

LRl
11

| K
'l

10811

FANTOMS
transcripts

il
I"IIIIIIIIIII

GWAS posterior
(M) il I GWAS SNPs.

Putting together data from a variety of sources suggests the existence of an alternative
transcription start site near the GWAS signal, but only active in erythrocytes. How can this be?




What is different about RBCs?

*—5 Bl —1—I1—H

The transcription of genes in red blood cells is controlled by a
particular set of transcription factors — a key one is GATAL.

GATA1 is named after the DNA motif it recognises:

vl.factorbook.org




GATA1 binds just upstream of 2" exon

Measured GATAL1 binding

1st exon 2nd exon

ESC'
ES-deriv?
Epithelial'

HSC & B-cell’
Blood & T-cell’
Neurosph'
Heart'

Other!

Brain’
Digestive'
Muscle’
Thymus'
ENCODEZ012 (except K562)'
K562’

proerythroblast®

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast®
Fetal liver erythroblast®

e

(11

| - Ilim
[ B (11
[ Ml

i L ma e
- A 1]

e il ksl

LRl
11

| K
'l

10811

FANTOMS
transcripts

il
I"IIIIIIIIIII

GWAS posterior
(M) ol i s GWAS SNPs

GATA1 peaks - — .

ChlIP-seq experiments show GATA1L binds just upstream of our new exon.
Moreover, one of the associated SNPs disrupts the GATA1 motif.




One of the malaria-associated SNPs disrupts the GATA site

signal

Association :|
(=]

= = e =

Known transcripts

. CD342
Erythroid BFU*
CFU? —
proerythroblast? i
ce I |S early basophilic? iy
late basophilic? il
from two = orthochromatic? —
H o polychromatic? N
experime nts; Bone marrow erythroblast? et
N=3 & N=24 Fetal liver erythroblast® _—:

day 8 erythroid progenitors*

E
B

circulating erythrocytes*

d GATA1 peaks _— .

e

e o o GGAGCGGTAAGATA- e < (malaria-protective allele)
rs10715451 | GGAGCGATAAGATA. . . (masrariskaice

t

Leads to a prediction:

 The risk allele creates GATA motif and is associated with increased ATP2B4
expression in RBCs.

* The protective allele removes the GATA motif and the gene is not expressed.



Does this really hold up?

Leads to a prediction:

* The risk allele creates GATA motif and is associated with increased ATP2B4
expression in RBCs.

* The protective allele removes the GATA motif and the gene is not expressed.

per-exon eQTL effect?
rs10751451 C/T

(n=24 erythroblasts)




Erythrocyte-specific calcium control at ATP2B4

==» direction of transcription

ATP2B4 is expressed in
all cells in this form

But in red cells in this
form

The risk allele has a
GATA site, and expresses
the gene in RBCs

Cat
Cat

u WELLCOME CENTRE for HUMAN GENETICS

..GAGCGATAAGAT...
..GAGCGGTARGAT...

The protective allele disrupts the GATA siteand
does not express the gene

Cat
ATP2B4 is a calcium pump. Cat Cat Ca*
It removes Cat from the
Cat
cell. Car

Bit confusing — parasites like calcium!

83



Erythrocyte-specific calcium control at ATP2B4

==» direction of transcription

ATP2B4 is expressed in
all cells in this form

But in red cells in this
form

The risk allele has a
GATA site, and expressed
the gene

~ca*

Ca*

Parasitophorous
vacuole

u WELLCOME CENTRE for HUMAN GENETICS

..GAGCGATAAGAT...
..GAGCGGTARGAT...

The protective allele disrupts the GATA siteand
does not express the gene

ATP2B4 is a calcium pump. Ca*
It removes Cat from the

cell. Ca* Cat

Lessard et al 2017, Zambo et.al 2017
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Learning biology from GWAS - summary

Have highlighted two of the complexities that could occur when
trying to fine-map genetic association signals.

They are pretty fascinating and luckily there is lots more of tis
type of thing to find!

Anything that can happen, does happen.
...and there is lots of data!



Learning biology from GWAS - summary

Non-coding variants Long-distance interactions in the genome

Changes to gene expression
polygenic eff

ects (lots of variants involved)

Cell-type / tissye heterogenelty

a variant affects lots of phenotypes atonce)

Genetic interactions Host-pathogen interactions

Pleiotmpy (

Repetitive DNA / repeat expansions

Genome structural variation
Genome evolution

Anything that can happen, it does happen.



Prospective cohort studies

A new crop of studies aims to create a database of deep genotype,
phenotype, and exposure data across large cohorts of individuals
sampled from the population or from health services. Examples:

CHINA KADODR/E

?ll}s m BIOBANK

............... PRRRANRIIL

THE PRECISION MEDICINE INITIATIVE

CartaGene (Canada)

Precision Medicine Initiative,

FinnGen (Finland)

China Kadoorie Biobank

biobank” o

UK Biobank

Health

The 100,000 genomes project (UK)
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Future
Health

To all residents,

An opportunity to take part in researc d learn new information about your blood pressure and future
risk of disease,

https://ourfuturehealth.org.uk

Scan this QR code for more info 5 \ Recruiting now
and to sign up “ )

Or visit ourfuturehealth.org.uk/join/0518

£10 voucher
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time a

Raghib All OBE b *(UK)
Chief Medical Officer, Qur Futur
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Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a hypothesis-
free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of GWAS,
including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide association
studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and pathway
analyses, and the concept of causal variants.



Conclusions and summary

Most human traits are highly heritable

For ‘complex’ traits, the effects are made up of many genetic
variants often with modest effects - polygenicity

GWAS study designs can find these variants. They rely on large
samples and dense genotyping, and patterns of linkage
disequilbirum to detect signals.

A major frontier is to understand the biology and translate these
findings into clinically useful insights and predictions.

(We need people like you to do this.)



Thanks for listening!
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