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Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a hypothesis-
free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of GWAS, 
including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide association 
studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and pathway 
analyses, and the concept of causal variants.



Main points in this lecture

How polygenic do traits get, 
anyway?
Polygenicity – Genetic architecture - Consortia  & 
Meta-analysis – GWAS trajectory

Extracting biological information 
from GWAS
Pathway analysis – fine mapping - 
pleiotropy
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My cartoon:

Actual results
from the Wellcome Trust Case-Control 

Consortium study:

Are you convinced?

Additive model, N=2,000 cases + 3000 controls per phenotype

“Common variant, common trait” hypothesis
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My cartoon:

Actual results
from the Wellcome Trust Case-Control 

Consortium study:

Are you convinced?

Additive model, N=2,000 cases + 3000 controls per phenotype

“Common variant, common trait” hypothesis

Maybe we haven’t found them all - 
how could we find more?



Standard error(log 𝑂𝑅) ≈
1

2𝑁 × 𝑓 1 − 𝑓 × 𝜙(1 − 𝜙)

N = sample size

f = frequency of 
allele

𝜙 = proportion of 
cases

To find more associations we should:

increase the sample size

Genotype frequency
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Remember the formula



Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019
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N = 125,992  IBD cases 
1.2 million controls

Inflammatory bowel disease
(Crohn’s disease and ulcerative colitis)

Very rare rare common Very common

Relative 
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> 600 association signals.



N = 74,000 T2D cases 
And 824,000 controls

Type 2 diabetes

Very rare rare common Very common

Relative 
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403 signals
“conditionally independent” meaning 
some of them overlap the same regions



~90% heritability
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GWAS of human height
In 5.4 million individuals

N = 5.4 million



~90% heritability
Very rare rare common Very common

Relative 

risk

4
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1

12,111 independent signals
Collectively explaining 50% of heritability

N = 5.4 million

GWAS of human height
In 5.4 million individuals

They collectively explain ~ 50% of heritability
In European ancestry people



Comparing across traits

Fraction of SNPs that are associated
(out of 1.1 million HapMap SNPs)

Average 
effect size

(normalized so no 
longer on log OR 

scale)

With all this data it’s 
possible to fit more 
sophisticated models that 
estimate the amount of 
polygenicity across traits.



Genotype

Phenotype

population

Affected

A complex trait.
Caused by many factors, each having a 
small overall effect.  Including

- Many genetic variants, including 
common ones

- Environmental factors
- Gene-environment or gene-gene 

interactions
- …

Common variant, common disease hypothesis

Genotype frequency

Very rare rare common Very common

Relative 

risk
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How are these studies possible?
Consortia and meta-analysis



Consolidation question from last lecture
WTCCC2 GWAS of multiple sclerosis (9,772 cases and 7,376 controls).

www.well.ox.ac.uk/wtccc2/ms/
(I think this requires the trailing /)

Can you explain?

http://www.well.ox.ac.uk/wtccc2/ms/


Consortia and meta-analysis

To generate such large sample sizes for “common” (but still relatively rare ) 
diseases, requires setting up large multi-centre collaborations.  This is fun to be 

involved in but comes with its own analysis challenges….



Dealing with population structure

# cases /
# controls
Per country

This study suffered from a key 
problem.  Can you see what it is?



Dealing with population structure

# cases /
# controls
Per country

First two “principal components” obtained 
purely from the genotypes

Case-control sampling is correlated with 
genome-wide genetic variation.

G
g

Population
structure

Case/control
sampling

This study suffered from a key 
problem.  Can you see what it is?

“Confounding by 
population structure”



Population structure: solutions

Plot of first two principal components obtained 
from the genome-wide genotypes

outcome ~ genotype + 

Include a genetic relatedness matrix computed from 
genome-wide genotypes in the association test

outcome ~ genotype + 𝑃𝐶𝑠 

1. Regression including principal 
components

2. Linear mixed model

Uses just the strongest directions of variation in 
relatedness (population structure)

Uses the entire matrix of relationships

Most p-values are now not inflated

Instead of simple 2x2 table

MS study



All GWAS should report data in a way that can be re-used by future studies.
This study used several previous GWAS to conduct replication.  All the details are given in a 
supplementary table:

Discovery and overall 
data as on web page

Evidence for the same 
effect direction was seen 
separately in both arms 

of the discovery…

…and in the 
combined 

replication...

…and in most of the individual 
replication studies.

This is a common analysis approach: to gain sample size, use meta-analysis to combine results 
across several component studies.  Then look for consistency between the studies.

𝛽meta = ෍

𝑖

𝛽𝑖

𝑣𝑖
× v𝑚𝑒𝑡𝑎v𝑚𝑒𝑡𝑎 = 1/ ෍

𝑖

1

𝑣𝑖

(Where v denotes squared standard error)

” Inverse variance weighted fixed-effect meta-analysis“, gives results approximately equal to joint analysis of genotype data.

Anatomy of an association analysis



We now have thousands of GWAS signals across thousands of 
traits.  What do they teach us about the underlying biology?

?



The circle of genetic causation

DNA gets physically 

packaged up into 

chromosomes...
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The circle of genetic causation
...passing on DNA, with 

mutations and 

recombination, to new 

generations...

...inside cells, where it is 

transcribed to form proteins 

and other molecules... 

...that affect how the cells 

behave, forming different 

organs...

...whose success is affected 

by the traits they have...

...that gets physically 

packaged up into 

chromosomes...

...that combine to make 

individuals...

microarrays, 

genome sequencing

Chromatin state 

marker assays, 

ChIP-seq, ...

RNA-seq, 

spectroscopy, antibody 

binding 

Biomarker 

measurements

Clinical phenotype 

measurements

There is complex 

biology at all stages

And we can measure it.



Gaining biological knowledge from GWAS

There are several ways we can try to translate knowledge of associations 

into new biological insights.  I will try to describe a few of these.

• Fine-mapping – can we identify the actual causal variants underlying these 

associations, and hence discover specific proteins and disease pathways?

• Pathway analysis – even if we can’t fine-map, we can still try to assess 

whether associations group into particular biological pathways  that might 
shed light on biology

• Pleiotropy – how are associations shared between traits?



The circle of genetic causation

...that combine to make 

individuals...

Example 1: a pathway analysis



Pathway analysis

Pathway analyses and gene enrichment analysis seek to determine whether 

there is a statistical tendency for association signals to fall into known groups 

of related genes.  These can be

- Known biological pathways (functional networks of proteins and molecules, 
performing known specific biological functions) – such as those available 

from the KEGG and Reactome databases

- More general classifications of genes by function, such as those from the 

Gene Ontology Project

A slightly different direction is to try to group signals by genome function – for 

example, do they lie in exons?  Or gene promoters? Or in regulatory regions 

active in particular cells?

https://www.genome.jp/kegg/ https://reactome.org http://geneontology.org



Pathway analysis example

The primary cause of MS has typically been thought to be inflammation causing 

downstream neurodegeneration – with some debate about this. Can the GWAS of MS we 

discussed shed light on this?

www.well.ox.ac.uk/wtccc2/ms/

As the main figure shows, many of the 

association signals looked like they were near 

immune-system related genes.



Pathway analysis example

www.well.ox.ac.uk/wtccc2/ms/

We:

• Assigned SNPs to their nearest gene using the available annotation

• Used the Gene Ontology Project to classify genes into functionally related groups

• Conducted a statistical test (Fisher’s exact test) to identify whether the nearest genes 

were enriched in each group.

T-helper-cell differentiation pathway
(from Ingenuity Pathway Analysis software)

Particularly strong enrichment was 

observed for immune system pathways 

– notably in “T cell activation and 

proliferation” (P=1.9x10-9)

“Although GO immune system genes only account 

for 7% of human genes, in 30% of our association 

regions the nearest gene to the lead SNP is an 

immune system gene”



Fine-mapping

“Fine-mapping” is the general term used for attempts to narrow down 

association signals to the underlying causal variants.  A typical process 

involves:

• Gathering complete information on genetic variation in the region of interest 
– for example by deep-sequencing a large number of individuals.  (Large 

databases such as gnomAD / TopMed now make this easier.)

• Gathering information on genome function – including gene structure and 

regulatory regions.

• Potentially leveraging data from different ancestral backgrounds, hoping that 

differences in LD patterns will help narrow down signals.

• Fitting models that attempt to parse apart multiple associations in the same 
region

Possible underlying mechanisms are pretty diverse and a healthy dose of 

genomic detective work is often needed.



The circle of genetic causation

...that combine to make 

individuals...

Fine-mapping example 1
Complex genetic variation



Plasmodium falciparum humansVS



GWAS of susceptibility to severe malaria 

www.malariagen.net

GWAS in 17,000 severe malaria cases and population controls
From 12 sites in Africa, Oceania, and SE Asia.
Genotyped on the Illumina Omni 2.5M array

+ whole-genome sequences 

for imputation

Malaria Genomic Epidemiology Network. “Insights into malaria susceptibility using genome-wide data 
on 17,000 individuals from Africa, Asia and Oceania” .

Nature Communications  (2019). https://doi.org/10.1038/s41467-019-13480-z 

https://doi.org/10.1038/s41467-019-13480-z
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cell variation
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SNPs on chromosome 4 are associated with 
proection against severe malaria

4,921 Gambians

2,516 Malawians
2,984 Kenyans

MalariaGEN, Nature 2015

Signal identified and replicated 
(rs186873296)

Chromosome 4



The association has quite large effect

> 30% protective effect per copy of the derived allele

Standard error(log 𝑂𝑅) ≈
1

𝑁 × 𝑓 1 − 𝑓 × 𝜙(1 − 𝜙)



Can we finemap?

We had an exciting association.  But fine-mapping has proven 
to be difficult for many GWAS loci.

To hope for success we might need:

- Good candidates for the functional gene?

- Good candidates for the causal mutation(s)?



SNPs on chromosome 4 are associated with 

proection against severe malaria

4,921 Gambians

2,516 Malawians
2,984 Kenyans

MalariaGEN, Nature 2015

Signal identified and replicated 
(rs186873296)

Glycophorins!



Glycophorins encode the ‘MNS’ blood group
(antigenic molecules on RBC surface)

Red blood cell 

membrane

Inside red blood 

cell

Outside red blood 

cell

Glycophorins

Grimes and Slater, The Inherited Metabolic Diseases, 1994



Glycophorins are receptors for P.falciparum 

during red blood cell invasion

Tolia et al, Cell 2005Miller et al, J. Exp. Med 1979 

Glycophorin A

P. Falciparum parasite

red blood cell
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Structural variants create deletions, 

duplications, and hybrid genes

Deleted / 

duplicated / hybrid 

genes

The MNS blood 

group is highly 

diverse, with over 45 

known antigens.

Encoded by single 

nucleotide 

polymorphisms and 

structural variants



Can we finemap?

We had an exciting association.  But fine-mapping has proven 
to be difficult for many GWAS loci.

To hope for success we might need:

 - Good candidates for the functional gene? 

 - Good candidates for the causal mutation(s)?



Steps to fine-map

Step 1: type or sequence as much of the genetic 
variation in the region as possible – hope to catch the 
causal mutation.

Step 2: re-analyse the association.

Step 3: look for functional mutations



A regional reference panel capturing structural variation

We used the >3,600 samples including

- 1000 Genomes Project Phase III reference panel

- plus our newly-sequenced samples

…to call SNPs and indels and 

structural variation.

Illustration of structural variant calling:

Sequencing 

depth

(this sample has a deletion in this region)



A regional reference panel capturing structural variation

We used the >3,600 samples including

- 1000 Genomes Project Phase III reference panel

- plus our newly-sequenced samples

…to call SNPs and indels and 

structural variation.

Illustration of structural variant calling:

Sequencing 

depth

(this sample has a deletion in this region)
…our method infers the copy number



Deletions Duplications

DEL1

DEL2

DEL8

DEL3

DEL4

DEL5

DEL6

DEL7

14% of Africans carry a CNV affecting these genes

E B A

deleted

The region turned out to have a lot of structural variation



Deletions Duplications

DEL1

DEL2

DEL8

DUP1

DEL3

DEL4

DEL5

DEL6

DEL7

DUP2

DUP3

DUP4

DUP5

DUP6

DUP7

DUP8

14% of Africans carry a CNV affecting these genes

E B A E B A

deleted

duplicated

triplicated

The region turned out to have a lot of structural variation



Original GWAS result

Before fine-mapping



After fine-mapping

Previous top SNP

Result after incorporating genetic variation discovered in sequenced samples.



Previous top SNP DUP4

After fine-mapping



This is how a microarray 

cluster plot should look: 3 

clusters for AA / AB / BB 

genotypes

microarray intensities

Confirming structural variants using cluster plots



This is how a microarray 

cluster plot should look: 3 

clusters for AA / AB / BB 

genotypes

What we saw in this region

microarray intensities

Actually this signal was evident in our cluster plots

Confirming structural variants using cluster plots



Still true that nothing seemed to be functional.  

What next?

This is how a microarray 

cluster plot should look: 3 

clusters for AA / AB / BB 

genotypes

What we saw in this region

microarray intensities microarray intensities

Protective: relative risk ~ 0.6

Not 

protective: 

RR ~ 0

Confirming structural variants using cluster plots



DUP4 duplicated

normal

deleted

duplicated
triplicatednormal normal

We were able to use cluster plots to confirm individuals in our 

GWAS really do carry the complicated structural variant “DUP4”.

DUP4 is pretty complicated – what could it be?

Confirming structural variants using cluster plots



What is DUP4?

“Normal” haplotype:

DUP4 haplotype:

https://doi.org/10.1126/science.aam6393

Leffler et al, “Resistance to malaria through structural variation of 
red blood cell invasion receptors”, Science (2017) 

https://doi.org/10.1126/science.aam6393


What is DUP4?

“Normal” haplotype:

DUP4 haplotype:

Functional followup study

https://doi.org/10.1038/s41586-020-2726-6

https://doi.org/10.1126/science.aam6393

Leffler et al, “Resistance to malaria through structural variation of 
red blood cell invasion receptors”, Science (2017) 

https://doi.org/10.1126/science.aam6393


Dantu is globally rare...

0 in 1,000

1 in 320

0 in 2870 Gambians‡

1 in 44,112 Londoners*

Germans†

African Americans†

The Dantu blood group has been found in:



…but found at high frequency in east Africa

0 in 1,000

1 in 320

0 in 2870 Gambians‡

Malawians‡1 in 12

Kenyans (from the Kilifi region)‡1 in 6

1 in 44,112 Londoners*

Germans†

African Americans†

The Dantu blood group has been found in:

Allele frequency:

West Africa East Africa



The circle of genetic causation

...that combine to make 

individuals...

Fine-mapping example 2
Cell-specific gene regulation



Natural resistance is driven by red blood 

cell variation



Association near 2nd exon of ATP2B4

ATP2B

4

The associated SNPs cover a region around the second exon.

None of these SNPs make changes to the protein.

What could be going on?

E
v
id
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n
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r 
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s
s
o

c
ia

ti
o

n

“Canonical” 

gene model for 

ATP2B4

ATP2B4 = a red 

cell “calcium 

pump”



1st exon

Introns (these get spliced out of the RNA)

Cartoon of a gene

Messenger RNA:

Transcription to mRNA

Direction of transcription



Cartoon of a gene

Messenger RNA:

Transcription to mRNA

Direction of transcription

The promoter region.

If the DNA is accessible here, 

transcription factors will bind and 

help to ‘turn on’ transcription



molecular assays
chromatin state, transcription factor binding, RNA transcription...

Two ways to look at transcription

Can look at chromatin 

state

RNA expression



1st exon 2nd exon
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ATP2B4 is widely expressed...

Malaria-associated regionData from ENCODE / Roadmap



1st exon 2nd exon

Malaria-associated region

Proerythroblasts:

Data from Xu et al Dev Cell (2012)

...but shows chromatin differences in RBCs
C

h
ro

m
a

ti
n
 s

ta
te

s
 i
n

 1
3

0
 c

e
ll 

ty
p

e
s



ATP2B4 is widely expressed…
Measured RNA transcription (RNA-seq)

1st exon 2nd exon

Non-erythroid 

cells (i.e. no red 

blood cells)

direction of transcription



ATP2B4 has an erythroid-specific transcript
Measured RNA transcription (RNA-seq)

1st exon 2nd exon

Erythroid cells show a different 

expression pattern.

Red cells do not have nuclei, so to capture 

mRNA expression in red cells,  these studies 

experimentally differentiated stem cells into 

the erythroid lineage, and measured 

transcription before enucleation.

direction of transcription



Measured RNA transcription (RNA-seq)

Putting together data from a variety of sources suggests the existence of an alternative 

transcription start site near the GWAS signal, but only active in erythrocytes.  How can this be?

ATP2B4 has an erythroid-specific transcript

1st exon 2nd exon

GWAS SNPs



The transcription of genes in red blood cells is controlled by a 
particular set of transcription factors – a key one is GATA1.

GATA1 is named after the DNA motif it recognises:

What is different about RBCs?

v1.factorbook.org

Transcription factor 
binding



GATA1 binds just upstream of 2nd exon
Measured GATA1 binding

ChIP-seq experiments show GATA1 binds just upstream of our new exon. 

Moreover, one of the associated SNPs disrupts the GATA1 motif.

1st exon 2nd exon

GWAS SNPs



Association 
signal

Known transcripts

...GGAGCGATAAGATA...

...GGAGCGGTAAGATA...

(malaria risk allele)

(malaria-protective allele)
rs10715451

Erythroid 
cells

from two 
experiments; 
N=3 & N=24

Leads to a prediction:
• The risk allele creates GATA motif and is associated with increased ATP2B4 

expression in RBCs.
• The protective allele removes the GATA motif and the gene is not expressed.

One of the malaria-associated SNPs disrupts the GATA site



Does this really hold up?

N = 24 experimentally 
differentiated 
erythrocyte precursor 
cells

Leads to a prediction:
• The risk allele creates GATA motif and is associated with increased ATP2B4 

expression in RBCs.
• The protective allele removes the GATA motif and the gene is not expressed.



83

Erythrocyte-specific calcium control at ATP2B4

ATP2B4 is expressed in 

all cells in this form

But in red cells in this 

form

direction of transcription

…GAGCGATAAGAT…

…GAGCGGTAAGAT…

The risk allele has a 
GATA site, and expresses 

the gene in RBCs The protective allele disrupts the GATA site and 
does not express the gene

Ca+

Ca+

Ca+ Ca+

Ca+

Ca+

Ca+ATP2B4 is a calcium pump.
It removes Ca+ from the 

cell. Ca+

Bit confusing – parasites like calcium!
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Erythrocyte-specific calcium control at ATP2B4

ATP2B4 is expressed in 

all cells in this form

But in red cells in this 

form

direction of transcription

…GAGCGATAAGAT…

…GAGCGGTAAGAT…

The risk allele has a 
GATA site, and expressed 

the gene The protective allele disrupts the GATA site and 
does not express the gene

Ca+ Ca+ATP2B4 is a calcium pump.
It removes Ca+ from the 

cell.
Ca+

Ca+

Ca+

Ca+

Ca+

Ca+

Ca+

Lessard et al 2017, Zambo et al 2017

Parasitophorous 
vacuole



Learning biology from GWAS - summary

Anything that can happen, does happen.
…and there is lots of data!

Have highlighted two of the complexities that could occur when 
trying to fine-map genetic association signals.

They are pretty fascinating and luckily there is lots more of tis 
type of thing to find!



Learning biology from GWAS - summary

Changes to gene expression

Host-pathogen interactions

Anything that can happen, it does happen.

Repetitive DNA / repeat expansions



Prospective cohort studies

A new crop of studies aims to create a database of deep genotype, 
phenotype, and exposure data across large cohorts of individuals 
sampled from the population or from health services.  Examples:

The 100,000 genomes project (UK)

Precision Medicine Initiative,
All of Us (US)

UK Biobank

China Kadoorie BiobankCartaGene (Canada)

FinnGen (Finland)



https://ourfuturehealth.org.uk

Recruiting now



Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a hypothesis-
free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of GWAS, 
including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide association 
studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and pathway 
analyses, and the concept of causal variants.



• Most human traits are highly heritable

• For ‘complex’ traits, the effects are made up of many genetic 
variants often with modest effects - polygenicity

• GWAS study designs can find these variants. They rely on large 
samples and dense genotyping, and patterns of linkage 
disequilbirum to detect signals.

• A major frontier is to understand the biology and translate these 
findings into clinically useful insights and predictions. 

Conclusions and summary

(We need people like you to do this.)



Thanks for listening!
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