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Main lecture messages

1. Most human phenotypes are highly heritable

(a large proportion of variation is due to genetics)

2. But many ‘complex’ traits are not mendelian - they are
polygenic

3. The discovery of this fact is due to genome-wide association
studies (GWAS), the first of which was conducted in the mid
2000s.

We will go into this in some detail — methodology, population genetics, GWAS in practice

4. Biology is hard



The human genome is ~3.2 billion base pairs long.

About 1in 100 — 1000 of those bases vary between people.

What proportion of phenotypic variation is
due to genetic variation?



Human traits are highly heritable

We don’t have to guess!

Idea: if genetics determines a trait, then more genetically
similar individuals should have more similar phenotypes.

We can estimate how much genetics determines trait variation by comparing trait
similarity in more genetically similar and less genetically similar individuals, such
as monozygotic and dizygotic twins.

Meta-analysis of the heritability of human traits based on

fifty years of twin studies

Tinca ] C Polderman®!%, Beben Benyamin®1?, Christiaan A de Leeuw!3, Patrick F Sullivan*-6,
Arjen van Bochoven’, Peter M Visscher®®!! & Danielle Posthumals%!! (2 01 5)

Large meta-analysis of > 2000 twin studies
(Browse the results at: https://match.ctglab.nl)



https://match.ctglab.nl/

Human traits are highly heritable

Idea: if genetics determines a trait, then more genetically
similar individuals should have more similar phenotypes.

MZ DZ
Twins Twins
r~0.92 r~0.47

Height

All studied
traits

Compare trait correlations between twins.

(Adult) height is much more similar
between monozygotic than dizygotic twins.
The heritability is about 90%.

Heritability is the proportion of trait variation explained by inherited factors (including
genetics) . Can be estimated as h? = 2 X (ry; — 1pz).




Human traits are highly heritable

If gengtics dgtqrmipes_ ! trait, then more Meta-analysis of the heritability of human traits based on
genetically similar individuals should fifty years of twin studies

h ave more simi Iar p h en Otyp es. Tinca ] C Polderman'-'?, Beben Benyamin®19, Christiaan A de Leeuw!?, Patrick F Sullivan*-6,

Arjen van Bochoven’, Peter M Visscher?®!1 & Danielle Posthumal:*11 (2 01 5)

Monozygotic Dizygotic

Age 18-64 years

MMMMMMMMMMMMMMMm%‘m%

Blood Conduct| Depr. Endocr. Eunct. of General Heart igh- | Fyperi Imm. Ment. Ment. Other | Spec. |Structure Structure Temp. | Weight
pressure| =" P gland Food metab. yperkin- system |beh. dis. |beh. dis.| anxiety |personal.| of the pers. maint.
is. | episode brain funct. etic dis. of mouth
funct. funr'l funr-t t. funcl alc tnb dls dus eyeball funr'l funcl

m 0.67 | 039 | 053 | 042 | | 052 | | 055 | | 041 | 0.41 | | 089 | 042 | 076 |
0.34 mmmm-m

Blood pressure S Adult height “Higher Structure
h? ~ 60% by h? ~ 90% level of the
SRR cognitive eyeball
function” h? = 70%
h? ~ 80%

Lots of theoretical caveats might apply here — see Lecture 1. But in general it is true that a
large proportion of variation in most human phenotypes is caused by genetics.

(Browse the results at: https://match.ctglab.nl)



https://match.ctglab.nl/

Two possible extreme genetic architectures

Example: Huntingdon’s
Not affected Affected P 9

Cell, Vol. 72, 971-983, March 26, 1993, Copyright © 1993 by Cell Press

Phenotype

A Novel Gene Containing a Trinucleotide Repeat
That Is Expanded and Unstable

on Huntington’s Disease Chromosomes
Genotype | [']

The Huntington’s Disease Coliaborative Introduction
Research Group*

population

Affects ~1 in 20,000 people of
European ancestry
(less in Africa and Asia)

Discovered by looking in families

S IIIIIEI

Strength
of effect

4 5 6 7 8 9 10 1 12 13

»
»

Very rare rare common Very common

Genotype frequency A “Mendelian” trait



Two possible extreme genetic architectures

Example: Huntingdon’s
Not affected Affected P 9

Cell, Vol. 72, 971-983, March 26, 1993, Copyright © 1993 by Cell Press

Phenotype

A Novel Gene Containing a Trinucleotide Repeat
That Is Expanded and Unstable

on Huntington’s Disease Chromosomes
Genotype | [']

The Huntington’s Disease Coliaborative Introduction
Research Group*

population

Affects ~1 in 20,000 people of
European ancestry
(less in Africa and Asia)

1000A O : . .
’ Discovered by looking in families

Relative 100
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Very rare rare common Very common

Genotype frequency A “Mendelian” trait



End of an era

“‘Linkage Mapping was successful in identifying the

Cystic fibrosis genetic basis of many human diseases in which the
(CFTR) disease penetrance resembles a simple Mendelian
model e.g. Huntington’s disease, Cystic Fibrosis, some

SEESL CECEl forms of breast cancer, Alzheimers, ...

Discovery ‘Sanger’ DNA

of A/B/O sequencing (BRCA1/2)
1901 1970’s 1989 1994-5
1950's 1980's 1993
: : “...but the literature is now replete with linkage
Structure of A '-0"‘;]‘ Huntingdon's (HTT) screens for an array of common ‘complex’ disorders
PNA ;;,?g‘g,p?n”g‘ Alzheimer's (APOE) such as schizophrenia, manic depression, auti_sm,
methods asthma, type | and type Il diabetes, Multiple

Sclerosis, Lupus. Although many of these studies
‘ ’ have reported significant linkage findings, none has

.Y . lead to convincing replication”
The era of linkage (family)

studies

— Risch “Searching for genetic determinants in the
new millennium” Nature (2000)



Common variant, common disease hypothesis

Affected

Phenotype
Genotype
population
A
Strength
of effect
@)
Very rare rare common Very common

Genotype frequency



Common variant, common disease hypothesis

Affected

Phenotype
Genotype
population
A
4
Relative
risk 2
@)
1 >
Very rare rare common Very common

Genotype frequency



Common variant, common disease hypothesis

Affected

Phenotype
Genotype
population
A complex trait.
Caused by many factors, each having a
R small overall effect. Including
4 . . . .
- Many genetic variants, including
Relative ° common ones
sk 2] o - Environmental factors
o %o OO o ° ° * . - Gene-environment or gene-gene
" R interactions
Very rare rare common Very common -

Genotype frequency



Summary

Most human phenotypes are highly heritable - a large
proportion of phenotype variation seems to be caused by
genetics. ~¥60% on average!

In principle this heritability could occur in different ways — for
example through single variants with strong effects, or through
multiple variants with small effects.

By the 2000s family studies had identified the causes of several
mendelian traits, but had failed to solve the genetics of multiple
complex diseases.

Was the “common variant, common disease” hypothesis true?



End of the linkage era

Cystic fibrosis
(CFTR)

Breast cancer

Discovery ‘Sanger’ DNA
(BRCA1/2)

of A/B/O sequencing

1901 1970's 1989 1994-5

*—ﬁ

1950’s 1980’s 1993

Structure of Low- Huntingdon’s (HTT)
DNA throughput

genotyping
methods

Alzheimer’'s (APOE)



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 2010
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput o million common ‘next generation’ >
genotyping Alzheimer's (APOE) genetic variants sequencing
methods (International

HapMap Project)

Microarray genotyping
technology

(100s of 1000s of
markers)



GWAS roadmap

1. Collect as many samples as possible How many samples?
2. Genotype the at as many variants across the How many variants?
genome as possible Which ones?

3. Run a statistical test for genotype-phenotype association
How to test?

Can we deal with confounders?

To produce this:

Evidence for 1
association

(g Pralue) | g ol i iiilnb

13 14 15 16 17 18 19202122 &

Vanants across the genome

Lots of statistical tests so to get excited we need strong evidence e.g. P <5 x 1078

T

An ad hoc but widely used threshold



GWAS roadmap

— + Testing for association
Confounding and the importance of quality control

What variants to genotype, and how? LD and the
HapMap study

A real GWAS study - WTCCC



Testing for association

Imagine a genetic variant that affects risk of disease

Unaffected

. Disease “cases”
individuals

Phenotype distribution
in the population



Testing for association

Unaffected

. Disease “cases”
individuals

If genotype G causes disease, then carrying G will make you more
likely to have disease.

“Chance/frequency of disease
given genotype G”
Relative risk = — = - >1
“Chance/frequency of disease
given genotype g”




Testing for association

Unaffected

. Disease “cases”
individuals

If genotype G causes disease, then carrying G will make you more
likely to have disease.

N P(disease|G)
Relative risk = _ > | Using probability
P(disease|g) notation

If the genotype causes disease, then the relative risk
will be different from 1




How to estimate relative risk?

_ P(disease| G)
~ P(disease| g)

RR

Disease frequencies
given genotype

(in population)



How to estimate relative risk?

_ P(disease| G)  P(G|disease) P(g)

RR = - — . X (in population)
P(disease| g)  P(g|disease) P(G)
Disease frequencies Genotype frequencies in
given genotype cases and controls

To estimate the relative risk, we just need to measure the genotypes
in some disease cases and population controls.

(Note: apply Bayes’ theorm)



How to estimate relative risk?

_ P(disease| G)  P(G|disease) P(g)

RR = - — . X (in population)
P(disease| g)  P(g|disease) P(G)
Disease frequencies Genotype frequencies in
given genotype cases and controls

To estimate the relative risk, we just need to measure the genotypes
in some disease cases and population controls.

G g
] , a d
Disease cases: a b OR = — x — (in sample)
Controls™ ¢ d b ¢



Key fact

G g
Disease cases: a b a d (in a sample of disease cases
OR — e and population controls)
Population ¢ d b C

controls™:

The odds ratio in a sample of cases and controls*
estimates the population relative risk.

Stricyly this applies to ‘population controls’, but also approximately true for ‘true’ disease controls, as long as the disease is not too common.



Example: O blood group and severe malaria

Cases were ascertained as children arriving in hospital with severe symptoms
compatible with malaria & parasitaemia, in a hospital in Kilifi, eastern Kenya.
Controls were ascertained from new births in the same hospitals.

non-
o) (o)

Severe malaria cases 686 843
Controls: 839 700

Can you compute the odds ratio?

N=3,068 samples
MalariaGEN 2019 doi: 10.1038/s41467-019-13480-z



Example: O blood group and severe malaria

Cases were ascertained as children arriving in hospital with severe symptoms
compatible with malaria & parasitaemia, in a hospital in Kilifi, eastern Kenya.
Controls were ascertained from new births in the same hospitals.

non-
(0] (0]
[ 686 700
Severe malaria cases 686 843 OR = — 0.68
Controls: 839 700 843 839

N=3,068 samples
MalariaGEN 2019 doi: 10.1038/s41467-019-13480-z



Suggests people with O blood group get severe
malaria at ~70% of the rate of people without

686 700

Could say: “O blood group is associated with ~30%
843 839 = 0.68 y group 0

reduced risk of severe malaria.”

But how much statistical evidence is there that this is
a real effect?



The key association test summary statistics

Effect size estimate

~

p = log(OR)

Standard error

se

1.96-se A95%
confidence
interval

1.96 - se

P =

P-value

Informally, a small p-value
means the effect is unlikely
to be zero

How strong is the estimated effect?
Often described on log(OR) scale

How much noise is there in the
estimate, because we only have a finite
sample?

How unlikely was such a big estimate, if
actually there was no effect?

In practice computed from the beta and
standard error:

p— @1 (log(OR))
/

Se

Normal distribution function



Incredibly useful formula

Fact: the standard error is largely determined by the study design.

Here is a very useful formula which approximates it in the 2x2 table example:

1
JNX (A=) xp(1—¢)

Standard error(log OR) =

N = sample size =
a+b+c+d
¢ = proportion of
7 f=frequency of G Cases

Note: this example is a allele
recessive effect of O blood
group. Use 2N instead if
testing an additive effect

The standard error depends on sample size, frequency, and case/control ratio.
1 .
It gets smaller (at rate N ) as the sample size increases.



How many samples did we need anyway?

E.g. suppose the variant we’re looking for has frequency f = 20%
and the effect size is RR = 1.5. How many samples do we need?

P =5 x 1078 corresponds to an effect about 5.5 standard errors
from zero, so very roughly we need a standard error at least as small

a3 log(1.5)

se(log OR) =

V2N X f(1—f) x 0.52

Answer: we need thousands!

1000 2000 3000 4000



Example: O blood group is associated with malaria protection

(0) non-0 N = 3,068
Severe malaria cases 686 843 f =~ 0.55
Controls: 839 700 ¢ =05
686 700 068
843 839 '
i.e. log(OR) ~ —0.386
1
Standard error(log OR) = ~ 0.073
(log O%) V3068 x 0.45 X 0.5 x 0.52 (on log scale)
N f(l f) ¢>(1—¢)

Estimated relative risk = 0.68
95% Cl = 0.59-0.78

(estimate +/- 1.96 standard errors)

Estimate is about 5 standard errors from zero

P=9.6x10"%



Major possible confounders

G
Poor quality Population
genotyping structure

Before testing, it is imperative to look carefully at genotyping and perhaps
remove samples or variants that have genotyped poorly

Because both genotypes and environments vary with geography, you should
also expect to have to deal with any issues of population structure — can be
either by removing samples or ‘controlling’ for structure.



Association testing in practice

In practice you would use a ‘regression’ method*, rather than
this simple 2x2 table approach to make these estimates:

 More flexible, e.g. allows modelling additive, dominance or
recessive effects

* Caninclude other covariates which help explain the
phenotype — including confounders

*E.g logistic regression (for case/control traits) or linear regression for continuous traits.



GWAS roadmap

1. Collect as many samples as possible How many samples?
2. Genotype the at as many variants across the How many variants?
genome as possible and do careful QC Which ones?

3. Run a statistical test for genotype-phenotype association
How to test?

Can we deal with confounders?

To produce this:

Evidence for 1
association

(g Pralue) | g ol i iiilnb

13 14 15 16 17 18 19202122 &

Vanants across the genome

Lots of statistical tests so to get excited we need strong evidence e.g. P <5 x 1078

T

An ad hoc but widely used threshold



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 2010
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput o million common ‘next generation’ >
genotyping Alzheimer's (APOE) genetic variants sequencing
methods (International

HapMap Project)

Microarray genotyping
technology

\ 4

Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



Patterns of inheritance generate linkage disequilbrium

Mutation arises 7-—
(€] d N
ets passed on
through many / | \
generations [
Time
Changes in frequency
cause variants to I
become correlated \l,
(LD)
Recombination / i i

breaks this down =*:>— =*:>—=| —r—— AZ’CD

leading to local
patterns

\



Patterns of inheritance generate linkage disequilbrium

Mutation arises

Gets passed on
through many
generations

Changes in frequency
cause variants to
become correlated
(LD)

Recombination
breaks this down
leading to local
patterns

VI
N
#-:l >
v l \y
|
Time
I
v
v J J N

Idea: maybe we can just genotype a dense set of marker genotypes

E.g. if we genotyped /\ , we might pick up the true signal at X




The HapMap project estimated LD

The extent of LD depends on the amount of recombination.

A haplotype map of the human genome International HapMap Project
The International HapMap Consortium* dOI210.1038/natU I’eo422 (2005)

Inherited genetic variation has a critical but as yet largely uncharacterized role in human disease. Here we report a

public database of common variation in the human genome: more than one million single nucleotide polymorphisms A d t b f 1 M SN P f d 1 E

(SNPs) for which accurate and complete genotypes have been obtained in 269 DNA samples from four populations, a a a se O > S O u n I n u ro p e a n 7
including ten 500-kilobase regions in which essentially all information about common DNA variation has been extracted.

These data document the generality of recombination hotspots, a block-like structure of linkage disequilibrium and low Af 5 d A H t H d H 'd I

haplotype diversity, leading to substantial correlations of SNPs with many of their neighbours. We show how the rl C a n ) a n SI a n a n Ces ry I n I V I u a S

HapMap resource can guide the design and analysis of genetic association studies, shed light on structural variation and

recombination, and identify loci that may have been subject to natural selection during human evolution. (A Ssu bset of th e sam p Ies Iat er used i n th e 1 000 G enomes Project)

Recombination turns out to be highly nonuniform.

It is concentrated in recombination hotspots. So
mutations are carried on longer haplotypes than had
been expected.

Shared haplotype lengths

Map of recombination rate



ENr131.2937.1 ENm014.7g31.33

Block-like structure of LD
(correlations between SNPs
in two different regions)
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Tag SNP set size Common SNPs captured (%)

CEU

50.000
100,000
250,000

As in Table 7, tag SNPs were picked to capture common SNPs in HapMap release 16¢1 using
Haploview, selecting SNPs in order of the fraction of sites captured, Common SNPs were

captured by fixed-size sets of pairwise tags at r* = 0.8

HapMap estimated how many SNPs genome-wide
would need to be typed to capture (by LD) most
common genetic variants. E.g. 250,000 would
capture ~95% of SNPs in European populations.



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 2010
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput o million common ‘next generation’ >
genotyping Alzheimer's (APOE) genetic variants sequencing
methods (International

HapMap Project)

Microarray genotyping
technology

\ 4

Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



How a microarray works

— s or e Wash the DNA over

2 2 < and let it hybridise to
millions of probes —
one for each SNP

Flourescent markers
are then attached. A
picture is taken of
the array.

O/' /TN g P 0 0 g0 N 0 3 T g A

bead address probe




A microarray gives you intensities, not genotypes

For each (well-genotyped) SNP, you get back this:

A clustering algorithm has been
used to turn the intensity values

(x/y axis values) into genotype calls
(colours).

05 00 05 1.0 15 20 25 30

Each dot represents DNA from one individual.
X axis = image intensity for 1t allele
Y axis = image intensity for 29 allele



A microarray gives you intensities, not genotypes

For each SNP, you get back this: Or this if you’re less lucky:

05 00 05 1.0 15 20 25 30

Each dot represents DNA from one individual. Small genotyping errors in cases or controls
X axis = image intensity for 1 allele could easily confound the study

Y axis = image intensity for 29 allele . :
& Y Careful quality control needed with

these technologies



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 2010
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput o million common ‘next generation’ >
genotyping Alzheimer's (APOE) genetic variants sequencing
methods (International

HapMap Project)

Microarray genotyping
technology

\ 4

Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



Anatomy of a GWAS — what to look for

. What samples How many?
1. Collect as many cases and controls as possible g /

2. Genotype (or impute) them at as many variants How many?
across the genome as possible

3. Deal with potential confounders — careful data How did they do quality
quality control and handle population structure. control — is it adequate?

4. Estimate relative risks, and look for statistical
evidence that of RR # 1

5. If estimate is many standard deviations from zero, Did they find anything with enough
bingo! We may have found a true causal effect. SRS
6.Replicate in other studies, or find other Is it convincing?

corroborating evidence?

7. (Now try to understand the underlying biology.) Can they understand the biology?



A real GWAS study - WTCCC

Genome-wide association study of 14,000
cases of seven common diseases and

3,000 shared controls

The Wellcome Trust Case Control Consortium* Nature (2007)

Studied seven common diseases in the UK

Bipolar disorder, Coronary Artery Disease, Crohn’s disease, Hypertension,
Rheumatoid arthritis, Type 1 and Type 2 Diabetes

Genotyped at 500,000 SNPs across the genome

doi:10.1038/nature05911



A real study - WTCCC

Chiarmo++
Fun 500k classic Genotype QC
DMA Prep & GiC arrays Analysis
; "H_-“\.I Ir""‘r._-“\,' '.._‘___—-_._‘_."\
L) .,

a & y i

Disease/Contraol Desigh &
Sroup Analysis Group




Anatomy of a GWAS — what to look for

N=2.,000 cases and

1. Collect as many cases and controls as possible 3.000 controls

2. Genotype (or impute) them at as many variants Genotyped at 500k
across the genome as possible SNPs

3. Dgal with potential confounders'— careful data Have they done adequate
guality control and handle population structure. data quality control?

Have they dealt with
4. Estimate relative risks, and look for statistical possible confounders?
evidence that of RR # 1

5. If estimate is many standard deviations from zero, : : .
. Did they find anything
bingo! We may have found a true causal effect. with strong evidence?

6. Does it replicate in other studies, or have other Is it convincing?
corroborating evidence?

7. (Now try to understand the underlying biology.) What about biology?



Collection
® ©|Missingness
Non-European

o & o = [Relative

©= N = O & = O o oHeterozygosity
N 3] = ~ .
> & o wn Y o ~Duplicate

Supplementary Table 4 | Exclusion summary by collection. Six filters were applied for sample
exclusion: 1. SNP call rate < 97% (missingness). 2. Heterozygosity > 30% or < 23% across all
SNPs. 3. External discordance with genotype or phenotype data. 4. Individuals identified as
having recent non-European ancestry by the Multidimensional Scaling analysis (see Methods). 5.
Duplicates (the copy with more missing data was removed) 6. Individuals with too much IBS
sharing (>86%); likely relatives. Where individuals could be excluded for more than one reason,
they appear in the leftmost such column.

Proportion missing calls

w.

wo

UL

]

WL

They kept
these
samples

i)
©
O
o)
£
[%)]
R
S
c
=
=
o
o
o
S
o

0.3 04 0.5
Proportion heterozygous calls

They then threw away 809 samples!

Due to:

- Poor genotyping rates

- Evidence of contamination (too many
heterozygous genotypes)

- Evidence of being not of European ancestry

- A duplicate, or close relative of another
sample

[
"

e it g e Tl WA L DA nietiin
0 2000

Chronological order of genotyping

Some of the poor quality data was
apparently due to batch effects.



To avoid confounding by population
structure, the samples were all
supposed to be from the United
Kingdom, and with European ancestry.

They used a method called principal
components analysis to detect ancestry
against the HapMap project samples.
Some non-European ancestry

WTCce individuals had been typed.
Excluded samples
YRI s i i
CEU 153 individuals were excluded on this
CHB+JPT .
basis.
Population
PCA computes genome-wide relationships between G
samples and then looks for directions of greatest — structure
variation. Since relatedness typically decreases g
with geographic distance, principal components
typically reflect geography. Case/control
— sampling




Using quantile-quantile plots to assess residual confounding

<
Before SNP
exclusions

After visually inspecting
cluster plots for
remaining associated
SNPs

. After SNP
exclusions

(Blue dots)... and after
removing remaining
strongly-associated regions
that they claim to be real

They also excluded 25,567 SNPs

from the study for

- High missing data rates

- Deviation from Hardy-Weinberg
equilibrium (lecture 1) in
controls

- Frequency differences between
the two control groups

- And they visually inspected
cluster plots for remaining SNPs

If there are few true signals, and if we have removed confounders — then P-values should largely
come from a uniform distribution - they should lie on the diagonal.



Phew!



Bipolar disorder

b h O

13 14 15 16 17 1819

Coronary artery disease ;

lii Hi ﬂﬂilﬂidlnn

12 13 14 15 16 17 15 1920212

Crohn’s Disease

il n ﬂihim

1 2 5 7 13 14 15 16 17 15 19

Hypertension

The main result of the study

D b e wd e N iiqnb

10 1 12 13 14 15 16 17 18 17

Rheumatoid arthritis

N N e W bk

12 13 14 15 16 17 1819

Type 1 Diabetes

T1D
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12 13 14 15 16 1F 18 1920212

Type 2 Diabetes




Bipolar disorder

b h O

13 14 15 16 17 1819

Coronary artery disease ;

lii Hi ﬂﬂilﬂidlnn

4 12 13 14 15 16 17 15 1920212

. ; Crohn’s Disease

e

Hypertension

il n ﬂihim

13 14 15 16 17 15 19

R R Tm

10 1 1 1 14 15 16 17 18 1f

i Rheumatoid arthritis

BRE AR

12 13 14 15 16 17 1819

Type 1 Diabetes

T1D

ﬂi uiﬁuwﬂiinu

12 13 14 15 16 17 18 1920212 Ed

Type 2 Diabetes

; T2D

li - o iilju

12 13 14 15 16 17 1519

Number of associations
with strong evidence

The study found 25
associations at their nominal
P-value threshold.

Twelve of these provided
replication of previously
implicated variants.
Thirteen were new
associations.

The traits clearly differ in
their genetic architecture

Some SNPs were associated
with some evidence with
multiple traits (mainly for
the autoimmune diseases).



Frequency vs. effect size, WTCCC Crohn's disease Effect sizes were generally modest
O
E.g. across the 9 associations with
Crohn’s disease, the maximum
estimated odds ratio was 1.54,
(similar to the O blood group

example)

ie]
=
©
e
»
°
°
o

0.3
(A strong effect with Type 1 Diabetes was also observed

Frequency in the MHC locus)

ﬂ‘
4
Relative O
rsk 2 ° .
0o %o ° o
o o o o

1 >

Very rare rare common Very common

Genotype frequency



Zooming in to a GWAS ‘hit’ plot

Sometimes called a ‘locus zoom’ plot. Here are some things to look for:

Evidence for association
with each SNP
(-log10 P-value or logl0
Bayes factor)

Delineation of association
region boundaries (usually
based on heuristics)

: CD hit region, chromosome 5
Black points were , _

typed, grey points
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HapMap
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Summary

GWAS is a very simple study design in principle - just genotyping a lot of cases and
controls, and test for association. The hard parts are in the implementation
details

In the early 2000’s, The HapMap and other projects enabled the first GWAS by
mapping SNPs genome-wide, and describing human haplotype variation.and
patterns of LD. High-throughput genotyping microarray technology was
developed to type these SNPs.

The WTCCC was one of the first large GWAS studies. It provided compelling
evidence that the ‘common variant, common disease’ hypothesis really holds.

Although the overall design is simple, we are looking for small differences in risk
between cases and controls (often RR = 1.5 or smaller). Consequently a lot of
careful work is needed to ensure there is no subtle confounding — e.g. from
sample collection, genotyping and data quality issues, or environmental
covariates.
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Where next?

We have clearly learned something about the biology of these diseases -
the ‘common variant, common disease’ hypothesis is really true — at least
for some traits, to some extent.

Raises several questions which we will get into in the next lecture, such as:

* So how polygenic do traits get?

 What about the biology underlying these associations?
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Biology is hard

CD hit region, chromosome 5
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Biology is hard

CD hit region, chromosome 5
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Biology is hard

Association observed with
CAD over a ~100kb region of
chromosome 9. Thisis
unquestionably a real
association (it has been
replicated in several
independent studies).

The functional mechanism of
this association is not fully
solved; it probably involves
regulation of expression of the
two nearby genes CDKN2A/B.

Neither gene was an obvious
candidate beforehand - thus, this
association does point to novel
o]{e][e]s)Y2

-log10 (p-value)

CAD hit region, chromosome 9
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Harismendy et al Nature 2011; Almontishari, et al JACC 2013; Almonitishari et al, Circulation 2015
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T2D hit region, chromosome 16
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This association with Type 2 Diabetes turned out to be through a
second, related trait (obesity), again unquestionably a real effect.
But as of 2018 the functional mechanism remains unclear.
Expression of FTO is known to affect obesity, but the SNPs may also
affect expression of another gene, IRX3, 200kb away.

Smemo et al, Nature 2014



T1D hit region, chromosome 12
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This pattern has turned out to be typical. It has generally proven extremely
hard to narrow down GWAS associations to underlying ‘causal’ variants.

LD is a double-edged sword.

Next lecture: we will look at this.



Anatomy of a GWAS — what to look for

. What samples How many?
1. Collect as many cases and controls as possible g /

2. Genotype (or impute) them at as many variants How many?
across the genome as possible

3. Deal with potential confounders — careful data How did they do quality
quality control and handle population structure. control — is it adequate?

4. Estimate relative risks, and look for statistical
evidence that of RR # 1

5. If estimate is many standard deviations from zero, Did they find anything with enough
bingo! We may have found a true causal effect. SRS
6.Replicate in other studies, or find other Is it convincing?

corroborating evidence?

7. (Now try to understand the underlying biology.) Can they understand the biology?



Consolidation question

Multiple Sclerosis GWAS Browser
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Visit the above site and make sure you understand what is shown. Pick a signal and try to work out

- What is the estimated effect size?

-  How strong was the evidence?

- Diditreplicate?

- Does the association signal look sensible — does it follow LD patterns, and do the cluster plots
look sensible?

- Can you figure out what the nearby genes do? (Warning: this can be a time sink!)

Bonus question: read the paper and try to figure out the questions on the checklist.


http://www.well.ox.ac.uk/wtccc2/ms/

Next lecture: Friday 7th Mar @14:30

Understanding the genetics of
complex traits |l

Gavin Band gavin.band@well.ox.ac.uk

BA Human Sciences
Friday 7th March 2025
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