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Main lecture messages

1. Most human phenotypes are highly heritable
(a large proportion of variation is due to genetics)

2. But many ‘complex’ traits are not mendelian - they are 
polygenic

3. The discovery of this fact is due to genome-wide association 
studies (GWAS), the first of which was conducted in the mid 
2000s.
We will go into this in some detail – methodology, population genetics, GWAS in practice

4. Biology is hard



What proportion of phenotypic variation is 
due to genetic variation?

The human genome is ~3.2 billion base pairs long.

About 1 in 100 – 1000 of those bases vary between people.



Human traits are highly heritable

Idea: if genetics determines a trait, then more genetically 
similar individuals should have more similar phenotypes. 

We can estimate how much genetics determines trait variation by comparing trait 
similarity in more genetically similar and less genetically similar individuals, such 
as monozygotic and dizygotic twins.

We don’t have to guess!

(2015)

Large meta-analysis of > 2000 twin studies
(Browse the results at: https://match.ctglab.nl)

https://match.ctglab.nl/


Human traits are highly heritable

MZ

Twins 

r~0.92

DZ

Twins

r~0.47

All studied 

traits

Heritability is the proportion of trait variation explained by inherited factors (including 
genetics) . Can be estimated as ℎ2 ≈ 2 × 𝑟𝑀𝑍 − 𝑟𝐷𝑍 .

(Adult) height is much more similar 
between monozygotic than dizygotic twins.
The heritability is about 90%.

Idea: if genetics determines a trait, then more genetically 
similar individuals should have more similar phenotypes. 

Compare trait correlations between twins.



Human traits are highly heritable

Adult height

ℎ2 ≈ 90%
Blood pressure

ℎ2 ≈ 60%
Depression

ℎ2 ≈ 42%

“Higher 

level 

cognitive 

function”

ℎ2 ≈ 80%

Structure 

of the 

eyeball

ℎ2 ≈ 70%

(Browse the results at: https://match.ctglab.nl)

Lots of theoretical caveats might apply here – see Lecture 1. But in general it is true that a 

large proportion of variation in most human phenotypes is caused by genetics .

(2015)

If genetics determines a trait, then more 

genetically similar individuals should 

have more similar phenotypes. 

Monozygotic Dizygotic

https://match.ctglab.nl/


Two possible extreme genetic architectures

Genotype

population

Phenotype

Not affected
Affected

Strength 

of effect

Genotype frequency

Very rare rare common Very common

Example: Huntingdon’s

Affects ~1 in 20,000 people of 

European ancestry
(less in Africa and Asia)

Discovered by looking in families

A “Mendelian” trait



Two possible extreme genetic architectures

Genotype

population

Phenotype

Not affected
Affected

Relative 

risk

Genotype frequency

Very rare rare common Very common

Example: Huntingdon’s

Affects ~1 in 20,000 people of 

European ancestry
(less in Africa and Asia)

Discovered by looking in families

A “Mendelian” trait
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1,000
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End of an era

Discovery 

of A/B/O

1901

Low-

throughput 

genotyping 

methods

1993

Huntingdon’s (HTT)Structure of 

DNA

1950’s

1970’s

1980’s

1989

Cystic fibrosis 

(CFTR)

Alzheimer’s (APOE)

1994-5

Breast cancer 

(BRCA1/2 )

The era of linkage (family) 

studies

‘Sanger’ DNA 

sequencing

“Linkage Mapping was successful in identifying the 

genetic basis of many human diseases in which the 
disease penetrance resembles a simple Mendelian 

model e.g. Huntington’s disease, Cystic Fibrosis, some 

forms of breast cancer, Alzheimers, …“ 
  

“…but the literature is now replete with linkage 
screens for an array of common ‘complex’ disorders 

such as schizophrenia, manic depression, autism, 

asthma, type I and type II diabetes, Multiple 
Sclerosis, Lupus. Although many of these studies 

have reported significant linkage findings, none has 
lead to convincing replication”

– Risch “Searching for genetic determinants in the 
new millennium” Nature (2000)

    
    



Common variant, common disease hypothesis

Genotype

Phenotype

Strength 

of effect

Genotype frequency

Very rare rare common Very common

population

Affected



Common variant, common disease hypothesis

Genotype

Phenotype

Genotype frequency

Very rare rare common Very common

population

Affected

Relative 

risk

4

2

1



Genotype

Phenotype

population

Affected

A complex trait.
Caused by many factors, each having a 
small overall effect.  Including

- Many genetic variants, including 
common ones

- Environmental factors
- Gene-environment or gene-gene 

interactions
- …

Common variant, common disease hypothesis

Genotype frequency

Very rare rare common Very common

Relative 

risk

4

2

1



Summary

• Most human phenotypes are highly heritable - a large 
proportion of phenotype variation seems to be caused by 
genetics.  ~60% on average!

• In principle this heritability could occur in different ways – for 
example through single variants with strong effects, or through 
multiple variants with small effects.

• By the 2000s family studies had identified the causes of several 
mendelian traits, but had failed to solve the genetics of multiple 
complex diseases.  

Was the “common variant, common disease“ hypothesis true?



End of the linkage era

Discovery 

of A/B/O

1901

Low-

throughput 

genotyping 

methods

1993

Huntingdon’s (HTT)Structure of 

DNA

1950’s

1970’s

1980’s

1989

Cystic fibrosis 

(CFTR)

Alzheimer’s (APOE)

1994-5

Breast cancer 

(BRCA1/2 )
‘Sanger’ DNA 

sequencing



The birth of GWAS

Discovery 

of A/B/O

1901

Low-

throughput 

genotyping 

methods

1993

Huntingdon’s (HTT)Structure of 

DNA

1950’s

1970’s

1980’s

1989

Cystic fibrosis 

(CFTR)

Alzheimer’s (APOE)

1994-5

Breast cancer 

(BRCA1/2 )
‘Sanger’ DNA 

sequencing

Human 

genome 

completed

2003

2005

Mapping of > 1 

million common 

genetic variants

(International 

HapMap Project)

2007

First proof of 

principle 

GWAS studies 

e.g. WTCCC

Microarray genotyping 

technology

(100s of 1000s of 

markers)

High-throughput 

‘next generation’ 

sequencing

2010



GWAS roadmap

2. Genotype  the at as many variants across the 
genome as possible

3. Run a statistical test for genotype-phenotype association

1. Collect as many samples as possible

Variants across the genome

Evidence for 

association 

(− log10 Pvalue)

To produce this:

Lots of statistical tests so to get excited we need strong evidence e.g. 𝑃 < 5 × 10−8

An ad hoc but widely used threshold

How many samples?

How many variants? 
Which ones?

How to test?
Can we deal with confounders?



GWAS roadmap

• Testing for association

• Confounding and the importance of quality control

• What variants to genotype, and how?  LD and the 
HapMap study

• A real GWAS study - WTCCC



G
g

Imagine a genetic variant that affects risk of disease

Disease “cases”
Unaffected 

individuals

Phenotype distribution
in the population

Testing for association



G
g

If genotype G causes disease, then carrying G will make you more 
likely to have disease.

=
𝑃 disease|genotype 𝐺

𝑃 disease|genotype 𝑔
> 1

“Chance/frequency of disease 
given genotype G”

“Chance/frequency of disease 
given genotype g”

Relative risk

Testing for association

Disease “cases”
Unaffected 

individuals



If genotype G causes disease, then carrying G will make you more 
likely to have disease. 

=
𝑃 disease|𝐺

𝑃 disease|𝑔
> 1Relative risk Using probability 

notation

G
g

Testing for association

If the genotype causes disease, then the relative risk 
will be different from 1

Disease “cases”
Unaffected 

individuals



How to estimate relative risk?

𝑅𝑅 =
𝑃 disease| 𝐺

𝑃 disease| 𝑔
(in population)

Disease frequencies 
given genotype



How to estimate relative risk?

𝑅𝑅 =
𝑃 disease| 𝐺

𝑃 disease| 𝑔
=

𝑃 𝐺|disease

𝑃 𝑔|disease
×

𝑃(𝑔)

𝑃(𝐺)

Genotype frequencies in 
cases and controls

(in population)

To estimate the relative risk, we just need to measure the genotypes 
in some disease cases and population controls.

Disease frequencies 
given genotype

(Note: apply Bayes’ theorm)



How to estimate relative risk?

G g

Disease cases: a b

Controls*: c d
𝑂𝑅 =

𝑎

𝑏
×

𝑑

𝑐

𝑅𝑅 =
𝑃 disease| 𝐺

𝑃 disease| 𝑔
=

𝑃 𝐺|disease

𝑃 𝑔|disease
×

𝑃(𝑔)

𝑃(𝐺)

Genotype frequencies in 
cases and controls

(in population)

(in sample)

To estimate the relative risk, we just need to measure the genotypes 
in some disease cases and population controls.

Disease frequencies 
given genotype



Key fact

G g

Disease cases: a b

Population 
controls*:

c d
𝑂𝑅 =

𝑎

𝑏
×

𝑑

𝑐

The odds ratio in a sample of cases and controls*
estimates the population relative risk.

Stricyly this applies to ‘population controls’, but also approximately true for ‘true’ disease controls, as long as the disease is not  too common.

(in a sample of disease cases 
and population controls)



Example: O blood group and severe malaria

O
non-
O

Severe malaria cases 686 843

Controls: 839 700

Cases were ascertained as children arriving in hospital with severe symptoms 

compatible with malaria & parasitaemia, in a hospital in Kilifi, eastern Kenya.  

Controls were ascertained from new births in the same hospitals.

Can you compute the odds ratio?

N=3,068 samples
MalariaGEN 2019 doi: 10.1038/s41467-019-13480-z 



O
non-
O

Severe malaria cases 686 843

Controls: 839 700
𝑂𝑅 =

686

843
×

700

839
= 0.68

N=3,068 samples
MalariaGEN 2019 doi: 10.1038/s41467-019-13480-z 

Example: O blood group and severe malaria

Cases were ascertained as children arriving in hospital with severe symptoms 

compatible with malaria & parasitaemia, in a hospital in Kilifi, eastern Kenya.  

Controls were ascertained from new births in the same hospitals.



𝑂𝑅 =
686

843
×

700

839
= 0.68

Suggests people with O blood group get severe 
malaria at ~70% of the rate of people without

Could say: “O blood group is associated with ~30% 
reduced risk of severe malaria.”

But how much statistical evidence is there that this is 
a real effect?



The key association test summary statistics

Effect size estimate

In practice computed from the beta and 
standard error:

𝑃 = Φ−1
log(OR)

se

Normal distribution function

Standard error

1.96 ⋅ se 1.96 ⋅ se
𝛽

How strong is the estimated effect?
Often described on log(OR) scale

How much noise is there in the 

estimate, because we only have a finite 

sample?

P-value How unlikely was such a big estimate, if 

actually there was no effect?

𝛽 = log(OR)

𝑠𝑒

A 95% 
confidence 
interval

Informally, a small p-value 

means the effect is unlikely 

to be zero 



Incredibly useful formula

Here is a very useful formula which approximates it in the 2x2 table example:

Standard error(log 𝑂𝑅) ≈
1

𝑁 × 𝑓 1 − 𝑓 × 𝜙(1 − 𝜙)

N = sample size = 
𝑎 + 𝑏 + 𝑐 + 𝑑

f = frequency of G 
allele

𝜙 = proportion of 
cases

The standard error depends on sample size, frequency, and case/control ratio.

It gets smaller (at rate 
1

𝑁
 ) as the sample size increases.

Fact: the standard error is largely determined by the study design.

Note: this example is a 
recessive effect of O blood 

group.  Use 2𝑁 instead if 

testing an additive effect



How many samples did we need anyway?

E.g. suppose the variant we’re looking for has frequency 𝑓 = 20% 
and the effect size is 𝑅𝑅 = 1.5.  How many samples do we need?

𝑙𝑜𝑔 1.5

5.5
≈ 0.07

se(log 𝑂𝑅) ≈
1

2𝑁 × 𝑓(1 − 𝑓)  × 0.52

𝑃 = 5 × 10−8 corresponds to an effect about 5.5 standard errors 
from zero, so very roughly we need a standard error at least as small 
as  

Answer: we need thousands!
𝑓 = 20%

𝑓 = 10%



Example: O blood group is associated with malaria protection

O non-O

Severe malaria cases 686 843

Controls: 839 700

𝑂𝑅 =
686

843
×

700

839
= 0.68

Standard error(log 𝑂𝑅) ≈
1

3068 × 0.45 × 0.55 × 0. 52
≈ 0.073

Estimated relative risk = 0.68
95% CI = 0.59-0.78
(estimate +/- 1.96 standard errors)

(on log scale)

i.e. log 𝑂𝑅 ≈ −0.386

Estimate is about 5 standard errors from zero

𝑃 = 9.6 × 10−8

𝑓(1 − 𝑓)𝑁 𝜙(1 − 𝜙)

𝑁 = 3,068
𝑓 ≈ 0.55
𝜙 ≈ 0.5

●

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4

10.750.5

RR



Major possible confounders

G
g

Poor quality 
genotyping

Before testing, it is imperative to look carefully at genotyping and perhaps 
remove samples or variants that have genotyped poorly

Population 
structure

Because both genotypes and environments vary with geography, you should 
also expect to have to deal with any issues of population structure – can be 

either by removing samples or ‘controlling’ for structure.



Association testing in practice

In practice  you would use a ‘regression’ method*, rather than 
this simple 2x2 table approach to make these estimates:

• More  flexible, e.g. allows modelling additive, dominance or 
recessive effects

• Can include other covariates which help explain the 
phenotype – including confounders

*E.g logistic regression (for case/control traits) or linear regression for continuous traits.



GWAS roadmap

2. Genotype  the at as many variants across the 
genome as possible and do careful QC

3. Run a statistical test for genotype-phenotype association

1. Collect as many samples as possible

Variants across the genome

Evidence for 

association 

(− log10 Pvalue)

To produce this:

Lots of statistical tests so to get excited we need strong evidence e.g. 𝑃 < 5 × 10−8

An ad hoc but widely used threshold

How many samples?

How many variants? 
Which ones?

How to test?
Can we deal with confounders?



The birth of GWAS

Discovery 

of A/B/O

1901

Low-

throughput 

genotyping 

methods

1993

Huntingdon’s (HTT)Structure of 

DNA
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Alzheimer’s (APOE)

1994-5

Breast cancer 

(BRCA1/2 )
‘Sanger’ DNA 

sequencing

Human 

genome 

completed

2003

2005

Mapping of > 1 
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genetic variants

(International 

HapMap Project)

2007

First proof of 

principle 

GWAS studies 

e.g. WTCCC

Microarray genotyping 

technology

High-throughput 

‘next generation’ 

sequencing

2010

Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



Mutation arises

Gets passed on 

through many 

generations 

Recombination 

breaks this down 

leading to local 

patterns

Time
Changes in frequency 

cause variants to 

become correlated 

(LD)

Patterns of inheritance generate linkage disequilbrium



Mutation arises

Gets passed on 

through many 

generations 

Recombination 

breaks this down 

leading to local 

patterns

Idea: maybe we can just genotype a dense set of marker genotypes
E.g. if we genotyped       , we might pick up the true signal at  

Time
Changes in frequency 

cause variants to 

become correlated 

(LD)

Patterns of inheritance generate linkage disequilbrium



International HapMap Project
doi:10.1038/nature0422 (2005)

The HapMap project estimated LD

A database of > 1M SNPs found in European, 
African, and Asian ancestry individuals
(A subset of the samples later used in the 1000 Genomes Project)

Recombination turns out to be highly nonuniform.  
It is concentrated in recombination hotspots.  So 
mutations are carried on longer haplotypes than had 
been expected.

Map of recombination rate

Shared haplotype lengths

The extent of LD depends on the amount of recombination.



Block-like structure of LD
(correlations between SNPs 

in two different regions)

YRI

CEU

CHB
+JPT



HapMap estimated how many SNPs genome-wide 
would need to be typed to capture (by LD) most 
common genetic variants.  E.g. 250,000 would 

capture ~95% of SNPs in European populations.



The birth of GWAS
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For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



How a microarray works

Wash the DNA over 
and let it hybridise to 
millions of probes – 
one for each SNP

Flourescent markers 
are then attached.  A 
picture is taken of 
the array.



A microarray gives you intensities, not genotypes

For each (well-genotyped) SNP, you get back this:

Each dot represents DNA from one individual.
X axis = image intensity for 1st allele
Y axis = image intensity for 2nd allele

B/B

A/B

A/A

A clustering algorithm has been 
used to turn the intensity values 
(x/y axis values) into genotype calls 
(colours).



Each dot represents DNA from one individual.
X axis = image intensity for 1st allele
Y axis = image intensity for 2nd allele

B/B

A/B

A/A

Or this if you’re less lucky:

B/B?

A/B?

A/A?

?

?

Small genotyping errors in cases or controls 
could easily confound the study

For each SNP, you get back this:

A microarray gives you intensities, not genotypes

Careful quality control needed with
these technologies



The birth of GWAS
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Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs



Anatomy of a GWAS – what to look for

What samples How many?

How many?

How did they do quality 

control – is it adequate?

Did they find anything with enough 

evidence?

Can they understand the biology?

1. Collect as many cases and controls as possible

2. Genotype (or impute) them at as many variants 
across the genome as possible

4. Estimate relative risks, and look for statistical 
evidence that of 𝑅𝑅 ≠  1

5. If estimate is many standard deviations from zero, 
bingo!  We may have found a true causal effect.

7. (Now try to understand the underlying biology.)

3. Deal with potential confounders – careful data 
quality control and handle population structure.

6.Replicate in other studies, or find other 
corroborating evidence?

Is it convincing?



A real GWAS study - WTCCC

Studied seven common diseases in the UK

Bipolar disorder, Coronary Artery Disease, Crohn’s disease, Hypertension, 
Rheumatoid arthritis, Type 1 and Type 2 Diabetes

Genotyped at 500,000 SNPs across the genome  

doi:10.1038/nature05911

Nature (2007)



A real study - WTCCC



Anatomy of a GWAS – what to look for

N=2,000 cases and 

3,000 controls

Genotyped at 500k 

SNPs

Have they done adequate 

data quality control?  

Have they dealt with 

possible confounders?

Did they find anything 

with strong evidence?

What about biology?

1. Collect as many cases and controls as possible

2. Genotype (or impute) them at as many variants 
across the genome as possible

4. Estimate relative risks, and look for statistical 
evidence that of 𝑅𝑅 ≠  1

5. If estimate is many standard deviations from zero, 
bingo!  We may have found a true causal effect.

7. (Now try to understand the underlying biology.)

3. Deal with potential confounders – careful data 
quality control and handle population structure.

6. Does it replicate in other studies, or have other 
corroborating evidence?

Is it convincing?



Supplementary Figure 18 | Individual missing 

data and heterozygosity. Scatter plot of the 

proportion of SNPs called heterozygote (x-axis) 

against the proportion called missing at a posterior 

probability threshold of 0.9 (y-axis) for each 

individual in the study. Dotted lines delimit the 

threshold used for exclusion of individuals from 

further analysis.

a) b)

Supplementary Figure 19 | Missing data and heterozygosity per SNP. a) Histogram of proportion of 

individuals called missing for each SNP (i.e with posterior probability < 0.9)  b) Scatter plot of the proportion of 

individuals called heterozygote (x-axis) against the proportion called missing at a posterior probability threshold 

of 0.9 (y-axis) for each SNP assayed. The dotted line shows the threshold over which a SNP was excluded from 

further analyses.

Proportion heterozygous calls

P
ro

p
o
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n
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s
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g
 c

a
lls

They kept 

these 

samples

They then threw away 809 samples!

Due to:
- Poor genotyping rates
- Evidence of contamination (too many 

heterozygous genotypes)
- Evidence of being not of European ancestry
- A duplicate, or close relative of another 

sample

P
ro

p
o

rt
io

n
 m

is
s
in

g
 c

a
lls

Chronological order of genotyping

Some of the poor quality data was 
apparently due to batch effects.



To avoid confounding by population 
structure, the samples were all 
supposed to be from the United 
Kingdom, and with European ancestry.  

They used a method called principal 
components analysis to detect ancestry 
against the HapMap project samples.  
Some non-European ancestry 
individuals had been typed.

153 individuals were excluded on this 
basis.

G
g

Population 
structure

Case/control 
sampling

PCA computes genome-wide relationships between 
samples and then looks for directions of greatest 
variation.  Since relatedness typically decreases 
with geographic distance, principal components 

typically reflect geography.



They also excluded 25,567 SNPs 
from the study for
- High missing data rates
- Deviation from Hardy-Weinberg 

equilibrium (lecture 1) in 
controls

- Frequency differences between 
the two control groups

- And they visually inspected 
cluster plots for remaining SNPs

If there are few true signals, and if we have removed confounders – then P-values should largely 
come from a uniform distribution - they should lie on the diagonal.

Before SNP 

exclusions
After SNP 

exclusions

After visually inspecting 

cluster plots for 

remaining associated 

SNPs

Using quantile-quantile plots to assess residual confounding

(Blue dots)… and after 

removing remaining 

strongly-associated regions 

that they claim to be real



Phew!



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

The main result of the study 



1

1

9

0

3

7

3

The study found 25 
associations at their nominal 
P-value threshold.

Twelve of these provided 
replication of previously 
implicated variants.  
Thirteen were new 
associations.

The traits clearly differ in 
their genetic architecture

Some SNPs were associated 
with some evidence with 
multiple traits (mainly for 
the autoimmune diseases).

Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

Number of associations
with strong evidence



Effect sizes were generally modest

E.g. across the 9 associations with 
Crohn’s disease, the maximum 
estimated odds ratio was 1.54, 
(similar to the O blood group 
example)

(A strong effect with Type 1 Diabetes was also observed 
in the MHC locus)  

Genotype frequency

Very rare rare common Very common

Relative 

risk

4

2

1



Zooming in to a GWAS ‘hit’ plot

Sometimes called a ‘locus zoom’ plot.  Here are some things to look for:

Regional genes

Position of SNPs in the reference 

genome assembly

The 

recombination 

rate, here as 

estimated by 

HapMap

Evidence for association 

with each SNP

(-log10 P-value or log10 

Bayes factor)

Delineation of association 

region boundaries (usually 

based on heuristics)

Signal ought to follow 

LD patterns.  In 

particular ought to 

drop off near 

recombination 

hotspots

Black points were 

typed, grey points 

were imputed from 

HapMap



Summary

• GWAS is a very simple study design in principle - just genotyping a lot of cases and 
controls, and test for association.  The hard parts are in the implementation 
details

• In the early 2000’s, The HapMap and other projects enabled the first GWAS by 
mapping SNPs genome-wide, and describing human haplotype variation.and 
patterns of LD.  High-throughput genotyping microarray technology was 
developed to type these SNPs.

• The WTCCC was one of the first large GWAS studies.  It provided compelling 
evidence that the ‘common variant, common disease’ hypothesis really holds.

• Although the overall design is simple, we are looking for small differences in risk 
between cases and controls (often RR = 1.5 or smaller).  Consequently a lot of 
careful work is needed to ensure there is no subtle confounding – e.g. from 
sample collection, genotyping and data quality issues, or environmental 
covariates.



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

We have clearly 
learned something 
about the biology of 
these traits. 

…so what?



• So how polygenic do traits get?

• What about the biology underlying these associations?

Where next?

We have clearly learned something about the biology of these diseases - 
the ‘common variant, common disease’ hypothesis is really true – at least 
for some traits, to some extent.

Raises several questions which we will get into in the next lecture, such as:



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

Let’s zoom in



Biology is hard



No genes under the main 
association signal!

Biology is hard



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D



Association observed with 

CAD over a ~100kb region of 

chromosome 9.  This is 

unquestionably a real 

association (it has been 
replicated in several 

independent studies).

The functional mechanism of 

this association is not fully 

solved; it probably involves 

regulation of expression of the 

two nearby genes CDKN2A/B.

Neither gene was an obvious 

candidate beforehand - thus, this 

association does point to novel 

biology.

Harismendy et al Nature 2011; Almontishari, et al JACC 2013; Almonitishari et al, Circulation 2015  

Biology is hard



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D



This association with Type 2 Diabetes turned out to be through a 

second, related trait (obesity), again unquestionably a real effect.

But as of 2018 the functional mechanism remains unclear.  

Expression of FTO is known to affect obesity, but the SNPs may also 

affect expression of another gene, IRX3, 200kb away.

Smemo et al, Nature 2014

FTO
IRX3



This pattern has turned out to be typical. It has generally proven extremely 
hard to narrow down GWAS associations to underlying ‘causal’ variants.

LD is a double-edged sword.

Next lecture: we will look at this.



Anatomy of a GWAS – what to look for

What samples How many?

How many?

How did they do quality 

control – is it adequate?

Did they find anything with enough 

evidence?

Can they understand the biology?

1. Collect as many cases and controls as possible

2. Genotype (or impute) them at as many variants 
across the genome as possible

4. Estimate relative risks, and look for statistical 
evidence that of 𝑅𝑅 ≠  1

5. If estimate is many standard deviations from zero, 
bingo!  We may have found a true causal effect.

7. (Now try to understand the underlying biology.)

3. Deal with potential confounders – careful data 
quality control and handle population structure.

6.Replicate in other studies, or find other 
corroborating evidence?

Is it convincing?



Consolidation question

GWAS of multiple 
sclerosis (2011) 

9772 cases, 17,376 
controls from across 
Europe

www.chg.ox.ac.uk/wtccc2/ms/
(I think this url requires the trailing /)

Visit the above site and make sure you understand what is shown.   Pick a signal and try to work out
- What is the estimated effect size?
- How strong was the evidence?
- Did it replicate?
- Does the association signal look sensible – does it follow LD patterns, and do the cluster plots 

look sensible?
- Can you figure out what the nearby genes do?  (Warning: this can be a time sink!)

Bonus question: read the paper and try to figure out the questions on the checklist.  

http://www.well.ox.ac.uk/wtccc2/ms/


Understanding the genetics of 
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