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Learning objectives

Understand a genome-wide association study (GWAS) and the concept of a
hypothesis-free approach to studying genetic associations.

Have a working knowledge of the different steps involved in the conduct of
GWAS, including study design, quality control and basic analyses.

Be able to interpret and critically appraise evidence from genome-wide
association studies.

Understand the relevance of replication, meta-analysis and consortia, and multi-
ancestry approaches, in genome-wide association studies.

Appreciate the use of post-GWAS analyses including fine mapping, gene and
pathway analyses, and the concept of causal variants.



| ecture outline

— - Heritability and genetic architecture

Genome-wide association studies in theory: searching
for a needle in a haystack

GWAS in practice
A real study

The challenge of understanding biology



The human genome is ~3.2 billion base pairs long.

About 1 in 100 — 1000 of those bases vary between people.

What proportion of phenotypic variation is
due to genetic variation?



Human traits are highly heritable

Idea: if genetics determines a trait, then more genetically similar individuals should have

more similar phenotypes. Can estimate how much genetics determines trait variation by
comparing trait similarity in monozygotic (identical) and dizygotic twins.

Meta-analysis of the heritability of human traits based on

fifty years of twin studies

MZ DYA
Twins Twins Tinca ] C Polderman’19, Beben Benyamin®1?, Christiaan A de Leeuw!3, Patrick F Sullivan*-S,
r~0.92 r~0.47 Arjen van Bochoven?, Peter M Visscher>®!! & Danielle Posthumal-11 (20 1 5)

2748 papers,

(Adult) height is much more highly
correlated between monozygotic
than dizygotic twins.

Heritability is about 90%.

All studied
traits

Definition: Heritability is the proportion of trait variation explained by inherited factors (including
genetics) . Can be estimated as h? = 2X(ryz — 7pz)



Human traits are highly heritable

|dea: if genetics determines a trait, then more genetically similar individuals should
have more similar phenotypes. Can estimate how much genetics determines trait
variation by comparing trait similarity in monozygotic (identical) and dizygotic twins.

Meta-analysis of the heritability of human traits based on

fifty years of twin studies

Tinca ] C Polderman’19, Beben Benyamin®1?, Christiaan A de Leeuw!3, Patrick F Sullivan*-S,
MZ DZ Arjen van Bochoven?, Peter M Visscher>®!! & Danielle Posthumal-11 (20 1 5)

Twins Twins
r~0.64 r~0.34

Across all traits, phenotypes
are much more highly
correlated between
monozygotics than dizygotic
twins. Heritability (averaged

All studied : '
traits across traits) is about 60%.

Definition: Heritability is the proportion of trait variation explained by inherited factors
(including genetics) . Can be estimated as h? = 2X(ryz — 1pz)



Human traits are highly heritable

If gen(_etics d?te'rmir‘esl = trait, then more Meta-analysis of the heritability of human traits based on
genetically similar individuals should fifty years of twin studies

h a Ve m Or e S imi I a r ph en Otyp eS . Tinca ] C Polderman®!?, Beben Benyamin®!%, Christiaan A de Leeuw!3, Patrick F Sullivan*-6,

Arjen van Bochoven?, Peter M Visscher®%!! & Danielle Posthumal-11 (2 O 1 5)

Monozygotic Dizygotic

Age 18-64 years

%Mm%m%%h%h%%%%mm%“m%

Blood Endocr. High-L. Ment. Ment. | Other | Spec. |Structure Temp. | Weight
pressure Conduct] Depr. gland Food Funct. of Hoart Height cognmve Hyperkin- system beh. dis. |beh. dis.| anxiety |personal.| of the Struoture pers. maint.
dis. episode brain funct. etic dis. of mouth
funct funcl fun funcl alc tob dns dIS eyeball funct. funct.

| 067 | 039 | 053 | | 0.92 | | 0.41 | 068 |
mmmmmmmm-mm

Blood pressure Deoression Adult height “Higher Structure
h? ~ 60% iy h? ~ 90% level of the
TR cognitive eyeball
function” h? = 70%
h? ~ 80%

Lots of theoretical caveats might apply here — see Lecture 1. But in general it is true that a
large proportion of variation in most human phenotypes is caused by genetics.

(Browse the results at: https://match.ctglab.nl)



https://match.ctglab.nl/

Two possible extreme genetic architectures

Example: Huntingdon’s
Not affected Affected P 9

Cell, Vol. 72, 971-983, March 26, 1993, Copyright © 1993 by Cell Press

Phenotype

A Novel Gene Containing a Trinucleotide Repeat
That Is Expanded and Unstable

on Huntington’s Disease Chromosomes
Genotype | [ ]

The Huntington’s Disease Coliaborative Introduction
Research Group*

population

Affects ~1 in 20,000 people of

European ancestry
(less in Africa and Asia)

Discovered by looking in families
Strength

of effect O !

4 5 6 7 8 9 10 11 12 13

B
L

Very rare rare common Very common

Genotype frequency A “Mendelian” trait



End of an era

“Linkage Mapping was successful in identifying the

Cystic fibrosis genetic basis of many human diseases in which the
(CFTR) disease penetrance resembles a simple Mendelian
model e.g. Huntington’s disease, Cystic Fibrosis, some

Breast cancer forms of breast cancer, Alzheimers, ...

Discovery ‘Sanger’ DNA

of A/B/O sequencing (BRCA1/2)
1901 1970’s 1989 1994-5
1950’s 1980’s 1993
: : “...but the literature is now replete with linkage
Str“glt\ﬂ;e of A LOV‘;]' Huntingdon’s (H77) screens for an array of common ‘complex’ disorders
;err?gg,p?:é Alzheimer’s (APOE) such as schizophrenia, manic depression, autism,
methods asthma, type | and type Il diabetes, Multiple

Sclerosis, Lupus. Although many of these studies
\ J have reported significant linkage findings, none has

Y lead to convincing replication”
The era of linkage (family)

studies

— Risch “Searching for genetic determinants in the
new millennium” Nature (2000)



Common variant, common disease hypothesis

Affected

Phenotype
Genotype
population
1‘
Strength
of effect
@)
Very rare rare common Very common

Genotype frequency



Common variant, common disease hypothesis

Affected

Phenotype

Genotype

Strength
of effect

population
@)
@)
Q O
0n © @)
©o 0 ©° o ©
Very rare rare common Very common

Genotype frequency

A complex trait.
Caused by many factors, each having a
small overall effect. Including

- Many genetic variants, including
common ones

- Environmental factors

- Gene-environment or gene-gene
Interactions



Summary

Most human phenotypes are highly heritable - a large
proportion of phenotype variation seems to be caused by
genetics. ~60% on average!

In principle this heritability could occur in different ways — for
example through single variants with strong effects, or through
multiple variants with small effects.

By the 2000s family studies had identified the causes of
several mendelian traits, but had failed to solve the genetics of
multiple complex diseases.

Was the “common variant, common disease” hypothesis true?
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Heritability and genetic architecture

— + Genome-wide association studies in theory
Linkage disequilibrium and the HapMap study
A real GWAS study

The challenge of understanding biology



Searching for a needle in a haystack

Haystack = millions of genetic variants

—OooOoliooooooo@—

Needle = true causal effect

Aim: find the causal genetic variants



Causal effects generate relative risk # 1

If genotype G causes disease, then carrying G will make you more
likely to have disease. That is,

“Chance of getting disease

given genotype G"
> 1

“Chance of getting disease
given genotype ¢’



Causal effects generate relative risk # 1

If genotype G causes disease, then carrying G will make you more
likely to have disease. That is,

“Chance of getting disease

, , given genotype G’
Relative risk = > 1

“Chance of getting disease
given genotype ¢’




Causal effects generate relative risk # 1

If genotype G causes disease, then carrying G will make you more
likely to have disease. That is,

L P(disease|genotype G N
RG/&Z’/V@ /’/Sk — ( |g yp ) > 1 Write as “probability

P(disease | genotype g) instead of “chance”

We can find genetic effects by looking for RR # 1



Plan of a genome-wide association study, version 1

1. Collect as many cases and controls
ds possible (typically many 1000s)

2. Genotype at variants across the
genome and estimate the relative risk

3. If there’s strong evidence that the
effect is not zero (association), bingo!

(4. Now try to understand the underlying biology....)



Plan of a genome-wide association study, version 1

1. Collect as many cases and controls How many do we need?
: _ Why do we need lots?
ds pOSSIb|e (typically many 1000s)

2. Genotype at variants across the How can we estimate

genome and estimate the relative risk the RR?
3. If there’s strong evidence that the How do we measure the
effect is not zero (association), bingo! | statistical evidence?

How much evidence is
needed anyway?

What about confounding?
(4. Now try to understand the underlying biology....)



How to estimate relative risk?

3 P(disease| G)

RR =
P(disease| g)

(in population)

Disease frequencies



How to estimate relative risk?

_ P(disease| G)  P(G|disease) 9 P(g)
~ P(disease| g)  P(g|disease) = P(G)

Genotype frequencies
in cases and controls

RR

(in population)

Disease frequencies

To estimate the relative risk, we just need to measure the genotypes in
some disease cases and controls.



How to estimate relative risk?

_ P(disease| G)  P(G|disease) P(g)

RR = =
P(disease| g)  P(g|disease) % P(G)

(in population)

Genotype frequencies

Disease frequencies :
In cases and controls

To estimate the relative risk, we just need to measure the genotypes in
some disease cases and controls...

G g
Disease cases: a b OR = o . E (in sample)
Controls™ ¢ d b ¢

The sample odds ratio estimates the population relative risk.

* If the controls are ‘true’ (unaffected) controls, this is still approximately true provided the disease is rare.



How to estimate relative risk?

_ P(disease| G)  P(G|disease) P(g)

RR = =
P(disease| g)  P(g|disease) % P(G)

(in population)

Genotype frequencies

Disease frequencies :
In cases and controls

To estimate the relative risk, we just need to measure the genotypes in
some disease cases and controls...

G g
Disease cases: a b OR = o . E (in sample)
Controls™ ¢ d b ¢

The sample odds ratio estimates the population relative risk. How accurately?

1 N = sample size = a+b+c+d
Standard error(log OR) =

\/N><f(1 — X1 — ¢) f = frequency of G allele ¢ = proportion of cases



How accurate Is our estimate?

1

Standard error(log OR) =~ VNXf(1 = xp(1 - ¢)
Xf(1—=f)X ~

N = sample size = ,
atb4ctd ¢ = proportion of
cases

f=frequency of G
allele

The standard errorreflects the uncertainty in our estimate because we have
taken a sample from the population. You may also know it as:

1.96 - se 1.96 - se A P-value summarises how

T
o many standard errors from
_ _ zero the log(OR) is
A 95% confidence interval extends log(OR)
1.96 standard errors in both P=a™ ( e )

directions from the log(OR)



Example: O blood group is associated with malaria protection

O non-0
Severe malaria cases 686 843 . 686 700 s
Controls: 839 700 843 " 839
Data from A=3,068 samples from Kilifi, Kenya O blood group is associated with a
MalariaGEN 2019 doi: 10.1038/541467-019-13480-z ~30% lower chance of severe malaria

(all else being equal).



Example: O blood group is associated with malaria protection

O non-0
Severe malaria cases 686 843 . 686 700 s
Controls: 839 700 8437839
Data from A=3,068 samples from Kilifi, Kenya O blood group is associated with a
MalariaGEN 2019 doi: 10.1038/s41467-019-13480-z ~30% lower chance of severe malaria
(all else being equal).
1
Standard error(log OR) = ~ 0.073  (onlog scale)
V3068x0.45x0.55x0.25

Estimated relative risk = 0.68
95% Cl = 0.59-0.78

(estimate +/- 1.96 standard errors)

1

Very unlikely to have arisen by
Estimate is ~5 standard errors from zero chance (if there was no effect).

P =9.6x1078
s this enough evidence?



Causal effects generate relative risk # 1

Causal effect

1. If genotype G causes disease, then will have RR # 1 ie. will cause
association (correlation)

2. Estimate the RR in a sample of cases and controls

3. If the estimate is sufficiently far from 1, start to get interested.

What about confounding?
(“Association is not causation”)



Three potential confounders

Association tests capture all causal paths from genotype to phenotype — even those that have
nothing to do with biology.




Three potential confounders

Association tests capture all causal paths from genotype to phenotype — even those that have
nothing to do with biology.

s

E.g. -
differential e
oG process
performance I
between

cases and Experimental

controls setup ~




Three potential confounders

Association tests capture all causal paths from genotype to phenotype — even those that have
nothing to do with biology.

G
/\

Population .
E.g. - E.g. different
di?ferential Genotyping structure : rates of
genotyping process \ sampling cases
performance I in different
between / Case/control ancestral
cases and Experimental sampling backgrounds

controls setup ~ 7/




Three potential confounders

Association tests capture all causal paths from genotype to phenotype — even those that have
nothing to do with biology.

Linkage disequilibrium
< >
g h

If this variant were the
causal one, we'd still
detect it through G/g

Will also pick up effects
from all nearby causal
variants that are in LD




How much evidence do we need?

In a GWAS, most variants we test won't be associated with the trait —
maybe only a few hundreds or thousands might. There is very little prior
expectation of association with any given variant.

Because of this, to get excited about a GWAS variant, we will need very
strong evidence.

The most commonly-used threshold is:
P =5x10"8
which corresponds to an estimate about 5.5 standard errors from zero.

Lots of samples
power needed

P-value threshold

posterior odds of association = prior odds X

Stringent threshold

Very small
needed



Plan of a genome-wide association study, version 1

1. Collect as many cases and controls
ds possible (typically many 1000s)

2. Genotype at variants across the
genome and estimate the relative risk

3. If there’s strong evidence that the
effect is not zero (association), bingo!

(4. Now try to understand the underlying biology....)

How many do we need?
Why do we need lots?

How can we estimate
the RA?

How do we measure the
statistical evidence?

How much evidence is
needed anyway?

What about confounding?



Plan of a GWAS, version 2

1. Collect as many cases and controls as possible

2. Genotype or impute them at as many variants
across the genome as possible. Rely on LD to capture
the others.

3. Deal with potential confounders — careful data
quality control and handle population structure.

4. Estimate relative risks, and look for statistical
evidence that of RR #= 1

5. If estimate is many standard deviations from zero (e.g. P < 5x1078),
bingo! We may have found a true causal effect.

6. Does it replicate in other studies, or have other
corroborating evidence?

7. (Now try to understand the underlying biology.)



Plan of a GWAS, version 2

1. Collect as many cases and controls as possible

But how can this work

in practice, if we don’t

the others. know the causal variant
beforehand?

3. Deal with potential confounders — careful data

quality control and handle population structure.

2. Genotype or impute them at as many variants
across the genome as possible. Rely on LD to capture

4. Estimate relative risks, and look for statistical
evidence that of RR #= 1

5. If estimate is many standard deviations from zero (e.g. P < 5x1078),
bingo! We may have found a true causal effect.

6. Does it replicate in other studies, or have other
corroborating evidence?

7. (Now try to understand the underlying biology.)



| ecture outline

Heritability and genetic architecture
Genome-wide association studies in theory

— + Linkage disequilibrium and the HapMap study
A real GWAS study

The challenge of understanding biology



End of the linkage era

Cystic fibrosis
(CFTR)

Breast cancer

Discovery ‘Sanger’ DNA
(BRCA1/2)

of A/B/O sequencing

1901 1970’s 1989 1994-5

e e e———————————————————

1950’s 1980’s 1993

Structure of Low- Huntingdon’s (HTT)
DNA throughput
genotyping

methods

Alzheimer’s (APOE)



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 208
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput e million common ‘next generation’ >
genotyping Alzheimer’s (APOE) genetic variants sequencing

methods (International
HapMap Project)

Microarray genotyping
technology

(100s of 1000s of
markers)

v



Understanding human genetic diversity

A haplotype map of the human genome International HapMap Project
The International HapMap Consortium® doi:10.1038/nature0422 (2005)

but as yet largely ul

A database of > 1M SNPs found in European,

African, and Asian ancestry individuals
(A subset of the samples later used in the 1000 Genomes Project)

Recombination turns out to be highly nonuniform.

It is concentrated in recombination hotspots. So
mutations are carried on longer haplotypes than had
been expected.

Shared haplotype lengths

40

. MMM@W@ ] Map of recombination rate

Tag SNP set size Common SNPs captured (%)

Estimated how many SNPs genome-wide would
need to be typed to capture (by LD) most common

10,000 ; c

20,000 genetic variants. E.g. 250,000 would capture

~95% of SNPs in European populations.

CEU CHB + JP




What does human genetic variation look like anyway?

Mutation arises

Gets passed on
through many
generations

Changes in frequency
cause variants to
become correlated
(LD)

Recombination
breaks this down
leading to local
patterns

s
/N
SRR ——
/ l \y
I
Time
I
v
/ l J N

R S

Patterns of LD depend on overall population size.
There are higher levels of LD in smaller populations.



ENr131.2g37.1 ENmO014.7g31.33

Block-like structure of LD
(correlations between SNPs
in two different regions)

(o2}
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N
o

N
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=
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®
£
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£
15
53
o3
o«

200 300
Position (kb)

o

200 300
Position (kb)

Recombination rate (cM Mb-T)



The birth of GWAS

Cystic fibrosis
(CFTR) First proof of
Human principle

Discovery ‘Sanger’ DNA Breast cancer genome GWAS studies >

of A/B/O sequencing (BRCA1/2) completed e.g. WTCCC

1901 1970’s 1989 1994-5 2003 2007
1950's 1980's 1993 2005 218
Structure of Low- Huntingdon’s (HTT) Mapping of > 1 High-throughput
DNA throughput e million common ‘next generation’ >
genotyping Alzheimer’s (APOE) genetic variants sequencing

methods (International
HapMap Project)

Microarray genotyping
technology

v

Microarrays developed in the late 90’s / early 2000’s.
For the first time was possible to rapidly type hundreds of thousands or millions of SNPs
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Heritability and genetic architecture

Genome-wide association studies in theory

Linkage disequilibrium and the HapMap study
— + Areal GWAS study

The challenge of understanding biology



A real GWAS study - WTCCC

Genome-wide association study of 14,000
cases of seven common diseases and

3,000 shared controls

The Wellcome Trust Case Control Consortium* Nature (2007)

Studied seven common diseases in the UK

Bipolar disorder, Coronary Artery Disease, Crohn’s disease, Hypertension,
Rheumatoid arthritis, Type 1 and Type 2 Diabetes

Genotyped at 500,000 SNPs across the genome

doi:10.1038/nature05911



A real study - WTCCC

Chiamo++

Run 500k classic Genotype QC
DNA Prep & QC arrays Analysis

Disease/Control Design &
Group Analysis Group




Anatomy of a GWAS — what to look for

N=2,000 cases and

1. Collect as many cases and controls as possible 3,000 controls

2. Genotype (or impute) them at as many variants Genotyped at 500k
across the genome as possible SIS

3. Deal with potential confounders — careful data Have they done adequate

quality control and handle population structure. data quality control?
Have they dealt with
4. Estimate relative risks, and look for statistical possible confounders?

evidence that of RR #= 1

5. If estimate is many standard deviations from zero, : : :
) Did they find anything
bingo! We may have found a true causal effect. with strong evidence?

6. Does it replicate in other studies, or have other Is it convincing?
corroborating evidence?

7. (Now try to understand the underlying biology.) What about biology?



How a microarray works

(B) lHlumina

NN PN PN P P NP 0 P g g AP AP g

probe

Wash the DNA over
and let it hybridise to
millions of probes —
one for each SNP

Flourescent markers
are then attached. A
picture is taken of
the array.



A microarray gives you intensities, not genotypes

For each SNP, you get back this:

An algorithm is needed to turn the
intensity values (x/y axis values)
into genotype calls (colours).

Each dot represents DNA from one individual.
X axis = image intensity for 15t SNP allele
Y axis = image intensity for 2" SNP allele



A microarray gives you intensities, not genotypes

For each SNP, you get back this: Or this if you're less lucky:

Each dot represents DNA from one individual. Small genotyping errors in cases or controls
X axis = image intensity for 1°t allele probe could easily confound the study
Y axis = image intensity for 2" allele probe



An algorithm is needed to call genotypes

The authors developed a genotype calling
algorithm to turn these data (intensities, X
and Y axis) into genotype calls (colours).
Samples lying outside clusters, or in
overlapping clusters, would be called as

MISSINg. (NB. Nowadays most studies use off-the-shelf
algorithms for this.)

In particular cases and controls were
jointly called.

Genotyping — .

/\




They then threw away 809 samples!

Collection
o ©|Missingness
Non-European

Due to:
- Poor genotyping rates
- Evidence of contamination (too many
heterozygous genotypes)
. - - - Evidence of being not of European ancestry
Supplgmentary Table 4 | Excluslon'su'mmary by collection. S%x ﬁlteri Jwere appal}ed for sample . .
exclusion: 1. SNP call rate <97% (missingness). 2. Heterozygosity > 30% or < 23% across all _ A dupllcate’ or C|OS€ relatlve Of another

SNPs. 3. External discordance with genotype or phenotype data. 4. Individuals identified as

having recent non-European ancestry by the Multidimensional Scaling analysis (see Methods). 5. sam | e
Duplicates (the copy with more missing data was removed) 6. Individuals with too much IBS p
sharing (>86%); likely relatives. Where individuals could be excluded for more than one reason,

they appear in the leftmost such column.

o & o = [Relative

© =N 2 O~ = O O OHeterozygosity
@ N Y © ~Duplicate

163 295

They kept
these
samples

e iy il G i i

0
®
O
o)
£
®
L
S
c
Qo
=
o
Q
[e)
—
o

0 2000

Chronological order of genotyping

£
®©
O
)
£
o
R
S
c
kel
=
o
Q
o)
— .
o

Some of the poor quality data was
apparently due to batch effects.

0.2 03 04 05 06
Proportion heterozygous calls




To avoid confounding by population
structure, the samples were all
supposed to be from the United
Kingdom, and with European ancestry.

They used a method called principal
components analysis to detect
ancestry against the HapMap project
samples. Some non-European ancestry
individuals had been typed.

WTCCC
Excluded samples
YRI T .
CEU 153 individuals were excluded on this
CHB+JPT .
basis.
Population
PCA computes genome-wide relationships G
between samples and then looks for directions of — structure
greatest variation. Since relatedness typically g
decreases with geographic distance, principal \
components typically reflect geography. Case/control
sampling

e



Using quantile-quantile plots to assess residual confounding

~

Before SNP
exclusions

After visually inspecting
cluster plots for
remaining associated
SNPs

¥ After SNP
exclusions

(Blue dots)... and after
removing remaining
strongly-associated regions
that they claim to be real

They also excluded 25,567 SNPs

from the study for

- High missing data rates

- Deviation from Hardy-
Weinberg equilibrium (lecture
1) in controls

- Frequency differences between
the two control groups

- And they visually inspected
cluster plots for remaining SNPs

If there are few true signals, and if we have removed confounders — then P-values should largely
come from a uniform distribution - they should lie on the diagonal.



Anatomy of a GWAS — what to look for

1. Collect as many cases and controls as possible

2. Genotype (or impute) them at as many variants
across the genome as possible

3. Deal with potential confounders — careful data
quality control and handle population structure.

4. Estimate relative risks, and look for statistical
evidence that of RR #= 1

5. If estimate is many standard deviations from zero,
bingo! We may have found a true causal effect.

6. Does it replicate in other studies, or have other
corroborating evidence?

7. (Now try to understand the underlying biology.)

N=2,000 cases and
3,000 controls

Genotyped at 500k
SNPs

Have they done adequate
data quality control?
Have they dealt with

possible confounders?

Did they find anything
with strong evidence?

s it convincing?

What about biology?



Bipolar disorder o
Number of associations

ﬁ. “ H ﬁ i‘ “ ﬁ i with strong evidence

13 14 15 161 18 18202122 X

Coronary artery disease

: The study found 25
Crohn’s Disease associations at their nominal

: iy - P-value threshold.

H H nﬁiiihin

10 1 12 13 14 15 16 17 18 1920212 ®

Twelve of these provided
replication of previously

N e e T B ﬁiliﬁ implicated variants.

9 10 11 12 13 14 15 16 17 18 1920212 ® Thirteen Were neW
Rheumat0|d arthritis 25s0ciations.

N B H ',l "N iﬁ The traits clearly differ in

10 11 12 13 14 15 16 17 18 1920212 ®

Type 1 Diabetes . T1D their genetic architecture

H W H li ﬂ ﬁ ﬁ i..n Some SNPs were associated

9 10 11 12 13 14 15 16 17 18 1920212 ®

Type 2 Diabetes Wlth Some eVIdence Wlth
: T2D multiple traits (mainly for

the autoimmune diseases).
n-ﬁuuu-“nu )

13 14 15 16 17 18 1920212 ®




e
=
©
—
n
o
ke
o

Frequency vs. effect size, WTCCC Crohn's disease

0.3

Frequency

CD hit region, chromosome 5

\,". £

el Y

40.0 40.5 41.0
Chromosomal position (Mb)

cM from hit SNP

Effect sizes were generally modest

E.g. across the 9 associations with
Crohn’s disease, the maximum
estimated odds ratio was 1.54,
(similar to the O blood group
example)

(A strong effect with Type 1 Diabetes was observed in
the MHC locus)

Zooming into these associations vies
us a more detailed picture of the
regional association — here shown
for the strong association on
chromosome 5.



Zooming in to a GWAS ‘hit’ plot

Sometimes called a ‘locus zoom’ plot. Here are some things to look for:

Evidence for association

with each SNP Delineation of association
(-log10 P-value or log10 region boundaries (usually
Bayes factor) based on heuristics)

_ CD hit region, chromosome 5
Black points were . _

typed, grey points
were imputed from
HapMap

Signal ought to follow
LD patterns. In
particular ought to
drop off near
recombination
hotspots

The
recombination
rate, here as
estimated by

HapMap

o
Z
w
=
<

£

o
=
=
o

Regional genes
40.0 40.5 41.0

Chromosomal position (Mb)

Position of SNPs in the reference
genome assembly



Region (Mb) SNP

11.94-
104.41-104.58

16
19.845-19.855

35.870-
221.92-2

r 6
rs2544677

10q11

log:10(BF),

ral

k allele

Ris

o

OO0 ->0Gc

1.16 (101-1.33)
147 (1.25-1.73
154 (1.03-23

116 (101-132)
133(1.18-1.51)
(1.04-1.69)

1.20 (1.06-1
1.44(1.19-1.7

141 (110-181)
134 (115-15

15 (1.02-1.3C
1.26 (1.11-1.42)
134 (1.00-1.7

1.09 (0.7
(1.18-1
147 (1.25-1.74)
134 (0.96-1.8
(1.26-

1

1

1
2

4

6

8-1.79)

6-2
4-1

68 (1.31-

6t

0.1

2

8
0

Case MAF

0.096

44

4
0.201
0.108

The results above used a P-
value threshold of P < 5x10~7

They also reported a longer list
of association at lesser levels of
evidence (P < 5x1077). Many
of these must be real as well.

How much statistical evidence
do we really need? How did
they choose a good threshold?



How to choose a P-value threshold

They reasoned like this: Based on what we know from HapMap, there are maybe 1
million ‘LD blocks’ in the human genome. Suppose maybe 10 of them, or so, are
associated with the trait. Then the prior chance of association for a randomly chosen
region (i.e. chosen ‘hypothesis free’) will be 10 in a million, i.e. plausibly

Prior odds = 1x107> before we see any data.

For a P-value threshold a it works out that:

_ statistical power _
odds(associated|P < a) = " X prior odds

=> If the statistical power is 50%, say, then setting & = 5x10~7 will give a posterior
odds of 10to 1.

This was a good choice! All of their associations have subsequently replicated in larger
studies.

Many GWAS use a more stringent @ = 5x10~8 threshold, while still others attempt to
directly estimate the above (c.f. ‘False discovery rate’ methods).



Statistical power

The statistical power says “how likely are we to detect a true effect”. Itis
essentially determined by:

- The true effect size B (which of course we don’t know beforehand)

1
NS - Hxe - ¢)

- The standard error, which we do know approximately ~ S€

- And also the threshold a, which says ‘how many standard errors away from
zero do we need?

power ~ NXf(1 - f)x¢(1 — ¢p)xp? The true, causal

effect size

Sample size Genotype Ratio of cases to

frequency controls in study



Anatomy of a GWAS — what to look for

1. Collect as many cases and controls as possible

2. Genotype (or impute) them at as many variants
across the genome as possible

3. Deal with potential confounders — careful data
quality control and handle population structure.

4. Estimate relative risks, and look for statistical
evidence that of RR #= 1

5. If estimate is many standard deviations from zero,
bingo! We may have found a true causal effect.

6. Does it replicate in other studies, or have other
corroborating evidence?

7. (Now try to understand the underlying biology.)

N=2,000 cases and
3,000 controls

Genotyped at 500k
SNPs

Have they done adequate
data quality control?
Have they dealt with

possible confounders?

Did they find anything with
strong evidence?

s it convincing?

What about biology?



Summary

GWAS is a very simple study design in principle - just genotyping a lot of cases
and controls, and test for association. The hard parts are in the implementation
details

In the early 2000’s, The HapMap and other projects enabled the first GWAS by
mapping SNPs genome-wide, and describing human haplotype variation.and
patterns of LD. High-throughput genotyping microarray technology was
developed to type these SNPs.

The WTCCC was one of the first large GWAS studies. It provided compelling
evidence that the ‘common variant, common disease’ hypothesis really holds.

Although the overall design is simple, we are looking for small differences in risk
between cases and controls (often RR = 1.5 or smaller). Consequently a lot of
careful work is needed to ensure there is no subtle confounding — e.g. from
sample collection, genotyping and data quality issues, or environmental
covariates.



| ecture outline

Background

Searching for a needle in a haystack
Genome-wide association studies in theory
GWAS in practice

— « The challenge of understanding biology
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We have clearly
learned something
about the biology of
these traits.

What about the

underlying causal
variants?



The challenge of understanding biology

CD hit region, chromosome 5
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Biology is complicated

Association observed with
CAD over a ~100kb region of
chromosome 9. This is
unquestionably a real
association (it has been
replicated in several
independent studies).

The functional mechanism of
this association is not fully
solved; it probably involves
regulation of expression of the
two nearby genes CDKNZ2A/B.

Neither gene was an obvious
candidate beforehand - thus, this
association does point to novel
biology.

-log10 (p-value)

CAD hit region, chromosome 9

N [ 111 (I
- _ __ °r  _ _°5©T T _ __ _ ’rr
22.5 23.0

Chromosomal position (Mb)

Harismendy et al Nature 2011; Almontishari, et al JACC 2013; Almonitishari et al, Circulation 2015

cM from hit SNP




12D hit region, chromosome 16
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This association with Type 2 Diabetes turned out to be through a
second, related trait (obesity), again unquestionably a real effect.
But as of 2018 the functional mechanism remains unclear.
Expression of FTO is known to affect obesity, but the SNPs may also
affect expression of another gene, IRX3, 200kb away.

Smemo et al, Nature 2014



T1D hit region, chromosome 12
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This pattern has turned out to be typical. It has generally proven extremely
hard to narrow down GWAS associations to underlying ‘causal’ variants.

LD is a double-edged sword.

Next lecture: we will look at this.



How to read a GWAS - checklist

What is the sample size?

How are the samples genotyped? Are cases and
controls typed in the same way?

What have the authors done to deal with potential

confounders - good data quality control? Population
structure? Is it convincing?

Do the results look sensible? Are the effect sizes reasonable? How strong is
the evidence?

Does the signal replicate?
Does the association follow patterns of LD?

If all the above seem fine - what genes are nearby? Can you figure out biology?



Consolidation question
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Visit the above site and make sure you understand what is shown. Pick a signal and try to work

out

- What is the estimated effect size?

- How strong was the evidence?

- Did it replicate?

- Does the association signal look sensible — does it follow LD patterns, and do the cluster plots
look sensible?

- Can you figure out what the nearby genes do? (Warning: this can be a time sink!)

Bonus question: read the paper and try to figure out the questions on the checklist.


http://www.well.ox.ac.uk/wtccc2/ms/
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