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Lecture plan

• Recap from last lecture – GWAS and the 
common variant / common trait hypothesis

• How polygenic are traits anyway?

• The challenge of fine-mapping



Recap

For many ‘complex’ traits, heritability seems to be due to lots 
of variants across the genome with small effects
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Figure 6. PCR Analysis of the (CAG), Repeat in a Venezuelan HD 
Sibship with Some Offspring Displaying Juvenile Onset 
Results of PCR analysis of a sibship in the Venezuelan HD pedigree 
are shown. Affected individuals are represented by closed symbols. 
Progeny are shown as triangles, and the birth order of some individuals 
has been changed for confidentiality. ANl, AN2, and AN3 mark the 
positions of the allelic products from normal chromosomes. AE marks 
the range of PCR products from the HD chromosome. The intensity 
of background constant bands, which represent a useful reference for 
comparison of the above PCR products, varies with slight differences 
in PCR conditions. The PCR products from cosmids L191Fl and 
GUS72-2130 are loaded in lanes 12 and 13 and have 18 and 48 CAG 
repeats, respectively. 

(lane 2) to seven children (lanes 3, 5, 6, 7, 8, 10, and 11). 
The three normal chromosomes present in this mating 
yielded a PCR product in the normal size range (ANI, 
AN2, and AN3) that was inherited in a Mendelian fashion. 
The HD chromosome in the father yielded a diffuse, fuzzy 
PCR product slightly smaller than the 48 repeat product 
of our non-Venezuelan HD cosmid. Except for the DNA 
in lane 5, which did not PCR amplify, and in lane 11, which 
displayed only a single normal allele, each of the affected 
children’s DNAs yielded a PCR product of a different size 
(AE), indicating instability of the HD chromosome (CAG), 
repeat. Lane 6 contained an HD-specific product slightly 
smaller than or equal to that of the father’s DNA. Lanes 
3, 7, 10, and 8, respectively, contained HD-specific PCR 
products of progressively larger size. The absence of an 
HD-specific PCR product in lane 11 suggested that this 
child’s DNA possessed a (CAG), repeat that was too long 
to amplify efficiently. This was verified by Southern blot 
analysis in which the expanded HD allele was easily de- 
tected and estimated to contain up to 100 copies of the 
repeat. Notably, this child had juvenile onset of HD at the 
very early age of 2 years. The onset of HD in the father 
was when he was in his early 40s typical of most adult HD 
patients in this population. The onset ages of the children 
represented by lanes 3, 7, 10, and 8 were 26, 25, 14, 
and 11 years, respectively, suggesting a rough correlation 
between age at onset of HD and the length of the (CAG), 
repeat on the HD chromosome. In keeping with this trend, 
the offspring represented in lane 6 with the fewest repeats 
has reached adulthood without showing symptoms of the 
disorder. 
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Figure 7. PCR Analysis of the (CAG). Repeat in a Venezuelan HD Sibship with Offspring Homozygous for the Same HD Haplotype 
Results of PCR analysis o‘a sibship from the Venezuelan IHD pedigree in which both parents are affected by HD are shown. Progeny are shown 
as triangles and birth order has been altered for confidentiality. No HD diagnostic information is given to preserve the blind status of investigators 
in the Venezuelan Collaborative Group. AN1 and AN2 mark the positions of the allelic products from normal parental chromosomes. AE marks 
the range of PCR products from the HD chromosome. The PCR products from cosmids LiQlFl and GUS72-2130 are loaded in lanes 29 and 30 
and have 18 and 48 CAG repeats, respectively. 

As opposed to this:

Common trait varying in 
the population

Trait inherited in families

This is the ‘common variant, common disease hypothesis’, first proposed in the 1990s.

“polygenic” “multifactorial”
“complex”

“mendelian” “high penetrance”

”monogenic”



We talked about the basic GWAS approach

G
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Basic idea: genotype as much genetic variation as possible in disease 
cases and controls.  Then estimate the relative risk of each variant.

=
𝑃 disease|genotype 𝐺
𝑃 disease|genotype 𝑔Relative risk Measures the association  between genotype and phenotype.

Estimated as an odds ratio in the study

If statistical evidence is strong that 𝑅𝑅 ≠ 1, we may have found an 
association.

© 2005 Nature Publishing Group 

 

varies by chromosome; when plotted against average recombination
rate on each chromosome (estimated from pedigree-based genetic
maps) these differences largely disappear (Supplementary Fig. 6).
Similarly, the distribution of haplotype length across chromosomes
is less variable when measured in genetic rather than physical
distance. For example, the median length of haplotypes is 54.4 kb
on chromosome 1 compared to 34.8 kb on chromosome 21. When
measured in genetic distance, however, haplotype length is much
more similar: 0.104 cM on chromosome 1 compared to 0.111 cM on
chromosome 21 (Supplementary Fig. 9).
The exception is again the X chromosome, which has more

extensive haplotype structure after accounting for recombination
rate (median haplotype length ¼ 0.135 cM). Multiple factors could

explain different patterns on the X chromosome: lower SNP density,
smaller sample size, restriction of recombination to females and
lower effective population size.

A view of LD focused on the putative causal SNP
Although genealogy and recombination provide insight into why
nearby SNPs are often correlated, it is the redundancies among SNPs
that are of central importance for the design and analysis of
association studies. A truly comprehensive genetic association
study must consider all putative causal alleles and test each for its
potential role in disease. If a causal variant is not directly tested in the
disease sample, its effect can nonetheless be indirectly tested if it is
correlated with a SNP or haplotype that has been directly tested.

Figure 8 | Comparison of linkage disequilibrium and recombination for two
ENCODE regions. For each region (ENr131.2q37.1 and ENm014.7q31.33),
D 0 plots for the YRI, CEU and CHBþJPTanalysis panels are shown: white,
D 0 , 1 and LOD , 2; blue, D 0 ¼ 1 and LOD , 2; pink, D 0 , 1 and
LOD $ 2; red,D 0 ¼ 1 and LOD $ 2. Below each of these plots is shown the

intervals where distinct obligate recombination events must have occurred
(blue and green indicate adjacent intervals). Stacked intervals represent
regions where there aremultiple recombination events in the sample history.
The bottom plot shows estimated recombination rates, with hotspots shown
as red triangles46.
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Rely on LD patterns to access associations 
even if we didn’t type the causal genetic 
variant.



The Wellcome Trust Case-
Control Consortium study 
(2007)
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SNPs across the genome

This study proved that the 
hypothesis really was 
true!  The methodology 
worked and multiple 
genetic associations were 
found across the genome.

Although traits varied a bit 
in how many associations 
were seen.

The genome-wide association study design really can find 
these common genetic associations

To detect effects we 
need large samples – 
here N=5,000 per 
disease



Consolidation question

GWAS of multiple 
sclerosis (2011) 

https://www.chg.ox.ac.uk/wtccc2/ms/
(I think this requires the trailing /)

Visit the above site and make sure you understand what is shown.   Pick a signal and try to work 
out
- What is the sample size?
- How strong was the evidence?
- Does the genotyping look accurate?
- Does the association follow LD patterns as you’d expect?
- What is the estimated effect size?
- Did it replicate?  How do discovery and replication effect sizes compare?
- What genes are nearby?  Can you figure out what they do?  (Warning: this can be a time sink!)

https://www.chg.ox.ac.uk/wtccc2/ms/


Consolidation question from last lecture
WTCCC2 GWAS of multiple sclerosis (9,772 cases and 7,376 controls).

www.well.ox.ac.uk/wtccc2/ms/
(I think this requires the trailing /)

Can you explain?

http://www.well.ox.ac.uk/wtccc2/ms/


LETTER
doi:10.1038/nature10251

Genetic risk and a primary role for cell-mediated
immune mechanisms in multiple sclerosis
The International Multiple Sclerosis Genetics Consortium* & the Wellcome Trust Case Control Consortium 2*

Multiple sclerosis is a common disease of the central nervous
system in which the interplay between inflammatory and neuro-
degenerative processes typically results in intermittent neuro-
logical disturbance followed by progressive accumulation of
disability1. Epidemiological studies have shown that genetic factors
are primarily responsible for the substantially increased frequency
of the disease seen in the relatives of affected individuals2,3, and
systematic attempts to identify linkage in multiplex families have
confirmed that variation within the major histocompatibility
complex (MHC) exerts the greatest individual effect on risk4.
Modestly powered genome-wide association studies (GWAS)5–10

have enabled more than 20 additional risk loci to be identified
and have shown that multiple variants exerting modest individual
effects have a key role in disease susceptibility11. Most of the genetic
architecture underlying susceptibility to the disease remains to be
defined and is anticipated to require the analysis of sample sizes
that are beyond the numbers currently available to individual
research groups. In a collaborative GWAS involving 9,772 cases
of European descent collected by 23 research groups working in 15
different countries, we have replicated almost all of the previously
suggested associations and identified at least a further 29 novel
susceptibility loci. Within the MHC we have refined the identity
of the HLA-DRB1 risk alleles and confirmed that variation in the
HLA-A gene underlies the independent protective effect attri-
butable to the class I region. Immunologically relevant genes are
significantly overrepresented among those mapping close to the
identified loci and particularly implicate T-helper-cell differenti-
ation in the pathogenesis of multiple sclerosis.
We performed a large GWAS as part of the Wellcome Trust Case

Control Consortium 2 (WTCCC2) project. Cases were recruited
through the International Multiple Sclerosis Genetics Consortium
(IMSGC) and compared with the WTCCC2 common control set12,13

supplemented by data from the control arms of existing GWAS. We
introduced a number of novel quality control methods for processing
these data sets (see Supplementary Information), which ultimately
provided reliable information from 9,772 cases and 17,376 controls
(Fig. 1a). After single nucleotide polymorphism (SNP)-based quality
controls, data from 465,434 autosomal SNPs, common to all internally
and externally generated data sets, were available for analysis.
The multi-population nature of our study (Fig. 1a, b) afforded an

opportunity to assess various published approaches for controlling the
potential confounding effects of population structure, several of which
(in the event) proved unhelpful (see Supplementary Information).
Although not common in primary GWAS undertaken to date, the
challenge of combining data across populations, in contexts where
not all case samples have controls available from the same population
(thus precluding standard meta-analytical techniques), may become
more routine as study sizes increase.
We attempted analyses of the non-United Kingdom (UK) data with

the now widespread technique of using principal components as
covariates to correct for structure. However, even use of all seven top
principal components that captured genome-wide effects in our data

resulted in an unacceptably high genomic inflation: for example, the
genomic control factor14 (l) was l5 1.2.We tried to reduce the genomic
inflationbydiscarding the case samples that seemed leastwellmatched to
control sets. Removal of half the available cases in this fashion only
reduced l to 1.1. In another approach to handling structure, statistical
clustering algorithmswere successful in identifying subgroupsof thedata
within which cases and controls seemed well matched for ancestry (see
Supplementary Fig. 17). However, tests within these subgroups com-
bined via fixed-effects meta-analysis also yielded unacceptably high
genomic inflation (l.1.4) in an analysis with sevenmatched subgroups
of cases and controls. Lastly, we applied a novel variance components
method (similar to one described previously15), separately to the UK and
non-UK data sets, which explicitly accounts for correlations among the

*A list of authors and their affiliations appears at the end of the paper; membership of both consortia is listed in Supplementary Information.
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Figure 1 | Distribution of cases and controls. a, b, All cases and controls were
drawn from populations with European ancestry; cases from 15 countries and
controls from8. a, Numbers of case (red) and control (black) samples fromeach
country. b, The projection of samples onto the first two principal components
of genetic variation, with cases shown on the left and controls on the right. The
axes are orientated to approximate the geography, and samples are colour
coded as indicated in the legend. NZ, New Zealand. We genotyped the cases
(9,772) and some Swedish controls (527) using the Illumina Human 660-Quad
platform, and the UK controls (5,175, the WTCCC2 common control set12,13)
using the Illumina 1.2M platform. All other controls were genotyped externally
using various Illumina genotyping systems (see Supplementary Information).
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Dealing with population structure

# cases /
# controls
Per country G

g
Population
structure

Case/control
sampling

Answer: very strong confounding by 
population structure / sampling

1. Use genome-wide genotypes to estimate genetic 
relatedness between samples

2. Include the relatedness as a covariate in the 
association test

Solution:

Matrix of relationships 
between samples



Using regression to test for association
(instead of the 2x2 table method)
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Plot of first two principal components obtained 
from the genetic relatedness matrix

outcome ~ genotype +

Include a genetic relatedness matrix computed from 
genome-wide genotypes in the association test

outcome ~ genotype + 𝑃𝐶𝑠

1. Logistic regression including 
principal components

2. Linear mixed model

Uses just the strongest directions of variation 
in relatedness (population structure)

Uses the entire matrix of relationships

  

the small effects of SNPs genome-wide and this ability to more accurately model the 
phenotype may also gain us power to see individual associations at some of the SNPs.  

 
 
Figure S18. Q-Q plots using linear mixed model. Plots are equivalent to those shown in 
Figure S16 but using the linear mixed model. Top row UK alone, bottom row fixed effects 
meta-analysis of UK and non-UK data, left hand including the MHC and right hand excluding 
the MHC. 
 
Validation of the Linear Mixed Model Approach 
 
Even though the overall genome-wide distribution of the test statistic in the linear mixed 
model scan is well controlled for population structure as measured by λ, there could still exist 
some SNPs that are highly differentiated between European populations and that could 
produce spurious association signals. To investigate this we considered the impact of 
including the seven primary PCs as covariates in the linear mixed model scan. Figure S19 
shows that the results of the linear mixed model at our 102 lead SNPs in the non-UK data set 
are not affected by adding seven PCs as covariates in the linear mixed model, but that the 
results between logistic regression with seven PCs and the linear mixed model (without PCs) 
are different. These results are in accordance with the genomic-inflation factors (λ=1.015 for 
linear mixed model in non-UK and λ=1.22 for logistic regression with 7 PCs in non-UK) and 
suggest that for our lead SNPs the structure captured by the leading PCs is well accounted for 
by the linear mixed model, but not vice-versa. We only considered the non-UK data set here 
because in the UK data the effects of the structure corrections are very modest. 
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Most p-values are now not inflated
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Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019

What happened next?
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GWAS went large scale
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Prospective cohort studies

A new crop of studies aims to create a database of deep 
genotype, phenotype, and exposure data across large cohorts of 
individuals sampled from the population or from health services.  
Examples:

The 100,000 genomes project (UK)

Precision Medicine Initiative (US)

UK Biobank

China Kadoorie Biobank
CartaGene (Canada)



http://www.ukbiobank.ac.uk/

“As of May 2018, there were over 
14,000 deaths, 79,000 participants 
with cancer diagnoses, and 400,000 
participants with at least one hospital 
admission. Considerable efforts are 
now underway to incorporate data 
from a range of other national 
datasets including primary care, 
screening programmes, and disease-
specific registries, as well as asking 
participants directly about health-
related outcomes through online 
questionnaire. Efforts are also 
underway to develop scalable 
approaches that can characterize in 
detail different health outcomes by 
cross-referencing multiple sources of 
coded clinical information”

Bycroft et al Nature 2018 



Figure 3. Number of significant associations (P < 10-8) at each tested 
genetic variant for all traits, non-binary and binary phenotypes. The HLA 
region (±10Mb) is indicated.        
 

 
 

  

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/176834doi: bioRxiv preprint first posted online Aug. 16, 2017; 

Number of statistically significant assocaitions among 717 traits
Canela-Xandri et al, http://geneatlas.roslin.ed.ac.uk/phewas/ 

The UK biobank has let us discover associations with 100s 
of traits across the whole genome, and indeed many 

variants are associated with many traits.

http://geneatlas.roslin.ed.ac.uk/phewas/


… so how polygenic do traits get?

Standard error ≈
1

𝑁×𝑓 1 − 𝑓 ×𝜙(1 − 𝜙)

To discover this we would 
need a large sample size!
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A Saturated Map of Common Genetic Variants Associated with Human Height 1 
from 5.4 Million Individuals of Diverse Ancestries 2 
 3 
 4 
ABSTRACT 5 
 6 
Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in 7 
human height, but identifying the specific variants and associated regions requires huge 8 
sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse 9 
ancestries, that 12,111 independent SNPs that are significantly associated with height 10 
account for nearly all of the common SNP-based heritability. These SNPs are clustered 11 
within 7,209 non-overlapping genomic segments with a median size of ~90 kb, covering 12 
~21% of the genome. The density of independent associations varies across the genome and 13 
the regions of elevated density are enriched for biologically relevant genes. In out-of-14 
sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance 15 
in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes, 16 
associated regions, and gene prioritization are similar across ancestries, indicating that 17 
reduced prediction accuracy is likely explained by linkage disequilibrium and allele 18 
frequency differences within associated regions. Finally, we show that the relevant 19 
biological pathways are detectable with smaller sample sizes than needed to implicate 20 
causal genes and variants. Overall, this study, the largest GWAS to date, provides an 21 
unprecedented saturated map of specific genomic regions containing the vast majority of 22 
common height-associated variants. 23 
 24 
 25 
INTRODUCTION 26 
 27 
Since 2007, genome-wide association studies (GWAS) have identified thousands of associations 28 
between common single nucleotide polymorphisms (SNPs) and height, primarily using studies of 29 
European ancestry. The largest GWAS published to date for adult height focussed on common 30 
variation and reported up to 3,290 independent associations in 712 loci using a sample size of up 31 
to 700,000 individuals.1 To date, adult height, which is highly heritable and easily measured, has 32 
provided a larger number of common genetic associations than any other human phenotype. In 33 
addition, a large collection of genes has been implicated in disorders of skeletal growth, and these 34 
are enriched in loci mapped by GWAS of height in the normal range. These features make height 35 
an attractive model trait for assessing the role of common genetic variation in defining the genetic 36 
and biological architecture of polygenic human phenotypes. 37 
 38 
As available sample sizes continue to increase for GWAS of common variants, it becomes important 39 
to consider whether these larger samples can “saturate” or nearly completely catalogue the 40 
information that can be derived from GWAS. This question of completeness can take several forms, 41 
including prediction accuracy compared with heritability attributable to common variation, the 42 
mapping of associated genomic regions that account for this heritability, and whether increasing 43 
sample sizes continue to provide additional information about the identity of prioritised genes and 44 
gene sets. Furthermore, because most GWAS continue to be performed largely in populations of 45 
European ancestry, it is important to address these questions of completeness in the context of 46 
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GWAS of height in 5.4 million individuals

Height is the epitome of 
polygenicity

Yengo et al bioRxiv (2021) https://doi.org/10.1101/2022.01.07.475305

It claims to map 
essentially all of the 
common mutations that 
determine human height.

There are 12,111 of them 
and (grouped into regions) 
they cover 21% of the 
genome.
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an attractive model trait for assessing the role of common genetic variation in defining the genetic 36 
and biological architecture of polygenic human phenotypes. 37 
 38 
As available sample sizes continue to increase for GWAS of common variants, it becomes important 39 
to consider whether these larger samples can “saturate” or nearly completely catalogue the 40 
information that can be derived from GWAS. This question of completeness can take several forms, 41 
including prediction accuracy compared with heritability attributable to common variation, the 42 
mapping of associated genomic regions that account for this heritability, and whether increasing 43 
sample sizes continue to provide additional information about the identity of prioritised genes and 44 
gene sets. Furthermore, because most GWAS continue to be performed largely in populations of 45 
European ancestry, it is important to address these questions of completeness in the context of 46 
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Fig. 1. Brisbane plot showing the genomic density of independent genetic associations with height. Each dot represents one of the 12,111 quasi-independent 
genome-wide significant (GWS; P<5×10-8) height-associated SNPs identified using approximate conditional and joint multiple-SNP (COJO) analyses of our trans-
ancestry GWAS meta-analysis. Density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means 
that a GWS COJO SNP share its location with another independent GWS COJO SNP within <100 kb. The average signal density across the genome is 2 (standard error; 
S.E. 0.14). S.E. were calculated using a Leave-One-Chromosome-Out jackknife approach (LOCO-S.E.). Sub-significant SNPs are not represented on the figure. 
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12,111 SNPs in regions covering ~21% of genome
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Zhu and Stephens, Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 
human phenotypes (2018) https://doi.org/10.1038/s41467-018-06805-x

The wealth of GWAS data 
allows studies that 
estimate the genetic 
architecture of different 
traits.

Here – “polygenicity” (x 
axis) versus average 
effect size (y axis)

https://doi.org/10.1038/s41467-018-06805-x


Lecture plan

• Recap from last lecture – GWAS and the 
common variant / common trait hypothesis

• How polygenic are traits anyway?

• The challenge of fine-mapping



GWAS have clearly told us a great deal about the genetic 
architecture of complex traits.

However, with some exceptions there has been less progress in 
turning GWAS associations into concrete information about 
biological processes, that can inform new therapies.

“Fine-mapping” = the process of narrowing down an 
association to a single causal mutation linked to 

biological mechanism.



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

E.g. this SNP associated with 
Crohn’s disease :
- Is common (about 63% 

allele frequency in 
European populations)

- Has a modest effect size 
(𝑅𝑅 ≈ 1.2, i.e. about a 20% 
increase in risk)

- Is strongly associated (this 
association is now well 
replicated).



Bipolar disorder

Coronary artery disease

Crohn’s Disease

Hypertension

Rheumatoid arthritis

T1D

T2D

What about the 
underlying causal 
variants?

Not clear how this works 
biologically.  E.g. there’s no 
gene under the association 
signal!
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Inflammatory bowel diseases (IBDs) are a group of chronic, debilitating 

disorders of the gastrointestinal tract with peak onset in adolescence 

and early adulthood. More than 1.4 million people are affected in the 

USA alone1, with an estimated direct healthcare cost of US$6.3 billion 

per year. IBD affects millions worldwide, and is rising in prevalence, 

particularly in paediatric and non-European ancestry populations2. 

IBD has two subtypes, ulcerative colitis and Crohn’s disease, which have  

distinct presentations and treatment courses. So far, 200 genomic loci have 

been associated with IBD3,4, but only a handful have been conclusively  

ascribed to a specific causal variant with direct insight into the underlying  

disease biology. This scenario is common to all genetically complex 

diseases, where the pace of identifying associated loci outstrips that 

of defining specific molecular mechanisms and extracting biological 

insight from each association.

The widespread correlation structure of the human genome (known 

as linkage disequilibrium) often results in similar evidence for asso-

ciation among many neighbouring variants. However, unless linkage 

disequilibrium is perfect (r2 =  1), it is possible, with a sufficiently large 

sample size, to statistically resolve causal variants from neighbours 

even at high levels of correlation (Extended Data Fig. 1 and ref. 5). 

Novel  statistical approaches applied to very large datasets that address 

this problem6 require that the highly correlated variants are directly 

Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. 

Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been 

conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease 

loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with 

greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 

45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor 

binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific 

immune cells among associations stronger in Crohn’s disease and in gut mucosa among associations stronger in ulcerative 

colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries 

from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for 

experimental elucidation of disease mechanisms.
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Fine mapping is hard!
Attempted fine-mapping of 139 signals of 
association with inflammatory bowel disease 
(Crohn’s disease and Ulcerative Colitis), using 
genotype data on 67,852 individuals, and data 
on the functional state in relevant cell types.

...with mixed success:

Among 45 likely 
causal variants: 

13 protein-coding 
changes

3 = disruption of 
transcription factor 

binding

10 = tissue specific 
epigenetic marks

At least 21 loci could not be assigned a plausible function despite the extensive data.

Huang et al Nature 2017
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and early adulthood. More than 1.4 million people are affected in the 

USA alone1, with an estimated direct healthcare cost of US$6.3 billion 

per year. IBD affects millions worldwide, and is rising in prevalence, 

particularly in paediatric and non-European ancestry populations2. 

IBD has two subtypes, ulcerative colitis and Crohn’s disease, which have  

distinct presentations and treatment courses. So far, 200 genomic loci have 

been associated with IBD3,4, but only a handful have been conclusively  

ascribed to a specific causal variant with direct insight into the underlying  

disease biology. This scenario is common to all genetically complex 

diseases, where the pace of identifying associated loci outstrips that 

of defining specific molecular mechanisms and extracting biological 

insight from each association.

The widespread correlation structure of the human genome (known 

as linkage disequilibrium) often results in similar evidence for asso-

ciation among many neighbouring variants. However, unless linkage 

disequilibrium is perfect (r2 =  1), it is possible, with a sufficiently large 

sample size, to statistically resolve causal variants from neighbours 

even at high levels of correlation (Extended Data Fig. 1 and ref. 5). 
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Huang et al Nature 2017

Fine mapping is hard!



1 3  J U L Y  2 0 1 7  |  V O L  5 4 7  |  N A T U R E  |  1 7 3

ARTICLE
doi:10.1038/nature22969

Fine-mapping inflammatory bowel 
disease loci to single-variant resolution
Hailiang Huang1,2*§, Ming Fang3,4*, Luke Jostins5,6*, Maša Umićević Mirkov7, Gabrielle Boucher8, Carl A. Anderson7, 
Vibeke Andersen9,10, Isabelle Cleynen11, Adrian Cortes5,12, François Crins3,4, Mauro D’Amato13,14,15, Valérie Deffontaine3,4, 
Julia Dmitrieva3,4, Elisa Docampo3,4, Mahmoud Elansary3,4, Kyle Kai-How Farh1,2,16, Andre Franke17, Ann-Stephan Gori3,4, 
Philippe Goyette8, Jonas Halfvarson18, Talin Haritunians19, Jo Knight20, Ian C. Lawrance21,22, Charlie W. Lees23, Edouard Louis3,24, 
Rob Mariman3,4, Theo Meuwissen25, Myriam Mni3,4, Yukihide Momozawa3,4,26, Miles Parkes27, Sarah L. Spain7,28, 
Emilie Théâtre3,4, Gosia Trynka7, Jack Satsangi23, Suzanne van Sommeren29, Severine Vermeire11,30, Ramnik J. Xavier2,31, 
International Inflammatory Bowel Disease Genetics Consortium†, Rinse K. Weersma29, Richard H. Duerr32,33, 
Christopher G. Mathew34,35, John D. Rioux8,36, Dermot P. B. McGovern19, Judy H. Cho37, Michel Georges3,4§,  
Mark J. Daly1,2§ & Jeffrey C. Barrett7§

Inflammatory bowel diseases (IBDs) are a group of chronic, debilitating 
disorders of the gastrointestinal tract with peak onset in adolescence 
and early adulthood. More than 1.4 million people are affected in the 
USA alone1, with an estimated direct healthcare cost of US$6.3 billion 
per year. IBD affects millions worldwide, and is rising in prevalence, 
particularly in paediatric and non-European ancestry populations2. 
IBD has two subtypes, ulcerative colitis and Crohn’s disease, which have  
distinct presentations and treatment courses. So far, 200 genomic loci have 
been associated with IBD3,4, but only a handful have been conclusively  
ascribed to a specific causal variant with direct insight into the underlying  
disease biology. This scenario is common to all genetically complex 

diseases, where the pace of identifying associated loci outstrips that 
of defining specific molecular mechanisms and extracting biological 
insight from each association.

The widespread correlation structure of the human genome (known 
as linkage disequilibrium) often results in similar evidence for asso-
ciation among many neighbouring variants. However, unless linkage 
disequilibrium is perfect (r2 =  1), it is possible, with a sufficiently large 
sample size, to statistically resolve causal variants from neighbours 
even at high levels of correlation (Extended Data Fig. 1 and ref. 5). 
Novel  statistical approaches applied to very large datasets that address 
this problem6 require that the highly correlated variants are directly 

Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. 
Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been 
conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease 
loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with 
greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 
45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor 
binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific 
immune cells among associations stronger in Crohn’s disease and in gut mucosa among associations stronger in ulcerative 
colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries 
from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for 
experimental elucidation of disease mechanisms.

1Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA. 2Broad Institute of MIT and Harvard, Cambridge, 
Massachusetts 02141, USA. 3Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium. 
4Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium. 5Wellcome Trust Centre for Human Genetics, University of Oxford, Headington OX3 7BN, UK. 6Christ Church, University of 
Oxford, St Aldates OX1 1DP, UK. 7Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. 8Research Center, Montreal Heart Institute, Montréal, Québec 
H1T 1C8, Canada. 9Focused research unit for Molecular Diagnostic and Clinical Research (MOK), IRS-Center Sonderjylland, Hospital of Southern Jutland, 6200 Åbenrå, Denmark. 10Institute of 
Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark. 11Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium. 12Oxford Centre for Neuroinflammation, Nuffield 
Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK. 13Clinical Epidemiology Unit, Department of Medicine Solna, 
Karolinska Institutet, 17176 Stockholm, Sweden. 14Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, 20014 San Sebastián, Spain. 15IKERBASQUE, Basque 
Foundation for Science, 48013 Bilbao, Spain. 16Illumina, San Diego, California 92122, USA. 17Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany. 
18Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, SE-70182 Örebro, Sweden. 19F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, 
Cedars-Sinai Medical Center, Los Angeles, California 90048, USA. 20Data Science Institute and Lancaster Medical School, Lancaster University, Lancaster LA1 4YG, UK. 21Centre for Inflammatory Bowel 
Diseases, Saint John of God Hospital, Subiaco, Western Australia 6008, Australia. 22Harry Perkins Institute for Medical Research, School of Medicine and Pharmacology, University of Western Australia, 
Murdoch, Western Australia 6150, Australia. 23Gastrointestinal Unit, Western General Hospital University of Edinburgh, Edinburgh, UK. 24Division of Gastroenterology, Centre Hospitalier Universitaire 
(CHU) de Liège, 4000 Liège, Belgium. 25Institute of Livestock and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway. 26Laboratory for Genotyping Development, Center 
for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan. 27Inflammatory Bowel Disease Research Group, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK. 28Open Targets, 
Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK. 29Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 
9700RB Groningen, The Netherlands. 30Division of Gastroenterology, University Hospital Gasthuisberg, 3000 Leuven, Belgium. 31Gastroenterology Unit, Massachusetts General Hospital, Harvard 
Medical School, Boston, Massachusetts 02114, USA. 32Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, 
Pennsylvania 15213, USA. 33Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, USA. 34Department of Medical and Molecular 
Genetics, King’s College London, London SE1 9RT, UK. 35Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa. 36Faculté de Médecine, 
Université de Montréal, Montréal, Québec H3C 3J7, Canada. 37Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA.
* These authors contributed equally to this work.
§These authors jointly supervised this work.
†Lists of participants and their affiliations appear in the Supplementary Information.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

Another example - IBD

Huang et al Nature 2017

“This analysis [..] leaves 21 non-coding variants, all of
which have >50% probabilities of being causal [..] that
are not located within known motifs, annotated
elements, or in any experimentally determined ChIP-
seq peaks or eQTL credible sets[..]. While we have
identified a statistically compelling set of genuine
associations (often intronic or within 10 kb of strong
candidate genes), we can make little inference about
function.[…]. That most of the best-refined non-coding
associations have no available annotation is perhaps
sobering with respect to how well we may currently be
able to interpret non-coding variation in medical
sequencing efforts. […]
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The circle of genetic causation
...passing on DNA, with 

mutations and 
recombination, to new 

generations...

...inside cells, where it is 
transcribed to form proteins 

and other molecules... 

...that affect how the cells 
behave, forming different 

organs...

...whose success is affected 
by the traits they have...

...that gets physically 
packaged up into 
chromosomes...

...that combine to make 
individuals...

microarrays, 
genome sequencing

Chromatin state 
marker assays, 

ChIP-seq, ...

RNA-seq, 
spectroscopy, antibody 

binding 

Biomarker 
measurements

Clinical phenotype 
measurements

There is complex 
biology at all stages

And we can measure it.



The circle of genetic causation

...that combine to make 
individuals...

Fine-mapping example 1:
genetic complexity



Plasmodium falciparum humansVS



GWAS of susceptibility to severe malaria 

www.malariagen.net

GWAS in 17,000 severe malaria cases and population controls
From 12 sites in Africa, Oceania, and SE Asia.
Genotyped on the Illumina Omni 2.5M array

+ whole-genome sequences 
for imputation

Malaria Genomic Epidemiology Network. “Insights into malaria susceptibility using genome-wide data 
on 17,000 individuals from Africa, Asia and Oceania”.

Nature Communications (2019). https://doi.org/10.1038/s41467-019-13480-z

https://doi.org/10.1038/s41467-019-13480-z


Natural resistance is driven by red blood 
cell variation

Known associations at O 
blood group and sickle trait
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discovered by GWAS

(We don’t 
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one is real)



Natural resistance is driven by red blood 
cell variation

Known associations at O 
blood group and sickle trait

New signals 
discovered by GWAS

(We don’t 
know if this 
one is real)
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USP38
GAB1

SMARCA5

FREM3

GYPE
GYPB

GYPA HHIP

144.0Mb 144.5Mb 145.0Mb 145.5Mb

SNPs on chromosome 4 are associated with 
proection against severe malaria

4,921 Gambians
2,516 Malawians
2,984 Kenyans
MalariaGEN, Nature 2015

Signal identified and replicated 
(rs186873296)

Chromosome 4



The association has quite large effect

> 30% protective effect per copy of the derived allele

Standard error(log𝑂𝑅) ≈
1

𝑁×𝑓 1 − 𝑓 ×𝜙(1 − 𝜙)



Can we finemap?

We had an exciting association.  But fine-mapping has 
proven to be difficult for many GWAS loci.

To hope for success we might need:

- Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?
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(rs186873296)

Glycophorins!



Glycophorins encode the ‘MNS’ blood group
(antigenic molecules on RBC surface)

Red blood cell 
membrane

Inside red blood 
cell

Outside red blood 
cell

Glycophorins

Grimes and Slater, The Inherited Metabolic Diseases, 1994



Glycophorins are receptors for P.falciparum
during red blood cell invasion

Tolia et al, Cell 2005Miller et al, J. Exp. Med 1979 

Glycophorin A

P. Falciparum parasite

red blood cell
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We had an exciting association.  But fine-mapping has 
proven to be difficult for many GWAS loci.

To hope for success we might need:

✅ - Good candidates for the functional gene? 
- Good candidates for the causal mutation(s)?
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Can we finemap?

We had an exciting association.  But fine-mapping has 
proven to be difficult for many GWAS loci.

To hope for success we might need:

✅ - Good candidates for the functional gene? 
- Good candidates for the causal mutation(s)?



Structural variants create deletions, 
duplications, and hybrid genes

Deleted / 
duplicated / hybrid 
genes

The MNS blood 
group is highly 
diverse, with over 45 
known antigens.

Encoded by single 
nucleotide 
polymorphisms and 
structural variants



Can we finemap?

We had an exciting association.  But fine-mapping has 
proven to be difficult for many GWAS loci.

To hope for success we might need:

✅ - Good candidates for the functional gene? 
✅ - Good candidates for the causal mutation(s)?



Steps to fine-map

Step 1: type or sequence as much of the genetic 
variation in the region as possible – hope to catch the 
causal mutation.

Step 2: re-analyse the association.

Step 3: look for functional mutations



A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase III reference panel
- plus our newly-sequenced samples

…to call SNPs and indels and 
structural variation.

Illustration of structural variant calling:

Sequencing 
depth

(this sample has a deletion in this region)



A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase III reference panel
- plus our newly-sequenced samples

…to call SNPs and indels and 
structural variation.

Illustration of structural variant calling:

Sequencing 
depth

(this sample has a deletion in this region)
…our method infers the copy number
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Deletions Duplications

DEL1

DEL2

DEL8

DEL3

DEL4

DEL5

DEL6

DEL7

14% of Africans carry a CNV affecting these genes

deleted

The region turned out to have a lot of structural variation
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Deletions Duplications

DEL1
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14% of Africans carry a CNV affecting these genes

deleted
duplicated
triplicated

The region turned out to have a lot of structural variation
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After fine-mapping
Previous top SNP

Result after incorporating genetic variation discovered in sequenced samples.
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Previous top SNP DUP4
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This is how a microarray 
cluster plot should look: 3 
clusters for AA / AB / BB 
genotypes

microarray intensities

Confirming structural variants using cluster plots



This is how a microarray 
cluster plot should look: 3 
clusters for AA / AB / BB 
genotypes

What we saw in this region

microarray intensities

Actually this signal was evident in our cluster plots

Confirming structural variants using cluster plots



Still true that nothing seemed to be functional.  
What next?

This is how a microarray 
cluster plot should look: 3 
clusters for AA / AB / BB 
genotypes

What we saw in this region

microarray intensities microarray intensities

Protective: relative risk ~ 0.6

Not 
protective: 

RR ~ 0

Confirming structural variants using cluster plots



DUP4 duplicated
normal

deleted

duplicated
triplicatednormal normal

We were able to use cluster plots to confirm individuals in our 
GWAS really do carry the complicated structural variant “DUP4”.

DUP4 is pretty complicated – what could it be?

Confirming structural variants using cluster plots



What is DUP4?
“Normal” haplotype:

DUP4 haplotype:

https://doi.org/10.1126/science.aam6393

Leffler et al, “Resistance to malaria through structural variation of 
red blood cell invasion receptors”, Science (2017) 

https://doi.org/10.1126/science.aam6393


What is DUP4?
“Normal” haplotype:

DUP4 haplotype:

Functional followup study

https://doi.org/10.1038/s41586-020-2726-6

https://doi.org/10.1126/science.aam6393

Leffler et al, “Resistance to malaria through structural variation of 
red blood cell invasion receptors”, Science (2017) 

https://doi.org/10.1126/science.aam6393


Dantu is globally rare...

0 in 1,000

1 in 320

0 in 2870 Gambians‡

1 in 44,112 Londoners*

Germans†

African Americans†

The Dantu blood group has been found in:



…but found at high frequency in east Africa

0 in 1,000

1 in 320

0 in 2870 Gambians‡

Malawians‡1 in 12
Kenyans (from the Kilifi region)‡1 in 6

1 in 44,112 Londoners*

Germans†

African Americans†

The Dantu blood group has been found in:

Allele frequency:

West Africa East Africa



The circle of genetic causation

...that combine to make 
individuals...

Fine-mapping example 2: 
expression complexity



Natural resistance is driven by red blood 
cell variation



Association near 2nd exon of ATP2B4

ATP2B
4

The associated SNPs cover a region around the second exon.
None of these SNPs make changes to the protein.
What could be going on?

Ev
id

en
ce

 fo
r a

ss
oc

ia
tio

n

“Canonical” 
gene model for 
ATP2B4

ATP2B4 = a red 
cell “calcium 
pump”



Exons

Introns

Cartoon of a gene

Direction of transcription



Cartoon of a gene

Messenger RNA:

Transcription to mRNA
Direction of transcription

Exons

Introns



Cartoon of a gene

Messenger RNA:

Transcription to mRNA
Direction of transcription

The promoter region. In order for this to take place, the DNA upstream 
of the gene must be accessible and helpers known 
as transcription factors must be able to bind.



molecular assays
chromatin state, transcription factor binding, RNA transcription...

Two ways to look at transcription

Can look at chromatin 
state

RNA expression



1st exon 2nd exon

C
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ATP2B4 is widely expressed...

Malaria-associated regionData from ENCODE / Roadmap



1st exon 2nd exon

Malaria-associated region

Proerythroblasts:

Data from Xu et al Dev Cell (2012)

...but shows chromatin differences in RBCs
C

hr
om

at
in

 s
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 c
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ATP2B4 is widely expressed…
Measured RNA transcription (RNA-seq)

1st exon 2nd exon

Non-erythroid 
cells (i.e. no red 
blood cells)



ATP2B4 has an erythroid-specific transcript
Measured RNA transcription (RNA-seq)

1st exon 2nd exon

Erythroid cells show a different 
expression pattern.

Red cells do not have nuclei, so to capture 
mRNA expression in red cells,  these studies 
experimentally differentiated stem cells into 
the erythroid lineage, and measured 
transcription before enucleation.



Measured RNA transcription (RNA-seq)

Putting together data from a variety of sources suggests the existence of an alternative 
transcription start site near the GWAS signal, but only active in erythrocytes.  How can this be?

ATP2B4 has an erythroid-specific transcript
1st exon 2nd exon

GWAS SNPs



The transcription of genes in red blood cells is controlled by a 
particular set of transcription factors – a key one is GATA1.

GATA1 is named after the DNA motif it recognises:

What is different about RBCs?

v1.factorbook.org

Transcription factor 
binding



GATA1 binds just upstream of 2nd exon
Measured GATA1 binding

ChIP-seq experiments show GATA1 binds just upstream of our new exon. 
Moreover, one of the associated SNPs disrupts the GATA1 motif.

1st exon 2nd exon

GWAS SNPs



Association 
signal

Known transcripts

...GGAGCGATAAGATA...

...GGAGCGGTAAGATA...
(malaria risk allele)

(malaria-protective allele)rs10715451

Erythroid 
cells

from two 
experiments; 
N=3 & N=24

Risk allele creates GATA motif 
and is associated with increased 

ATP2B4 expression – of the 
erythroid transcript

RNA 
expression

(N=24)

exons

One of the malaria-associated SNPs disrupts the GATA site



Prediction: the alternative (=risk) allele creates a GATA1 site.  It 
would increase expression of ATP2B4 starting at the new exon.  
But it wouldn’t affect expression of the ‘usual’ 1st exon.

Does this really hold up?

N = 24 experimentally 
differentiated 
erythrocyte precursor 
cells



Ca+

Ca+

PMCA4

ATP2B4 encodes a calcium pump (called PMCA4) in the RBC membrane.  
It acts to remove calcium from the cell.  

When the parasite invades, the membrane gets inverted around the 
parasite, so presumably PMCA4 must also get inverted.

PMCA4

Ca+
Zambo et al, Cell Calcium 2017

Functional hypothesis

Ca+

This might explain why lower expression of the 
gene provides protection – since  parasites require 

calcium to grow effectively.

This is a hypothesis - not 
experimentally tested (yet)!



The circle of genetic causation
...passing on DNA, with 

mutations and 
recombination, to new 

generations...

...inside cells, where it is 
transcribed to form proteins 

and other molecules... 

...that affect how the cells 
behave, forming different 

organs...

...whose success is affected 
by the traits they have...

...that gets physically 
packaged up into 
chromosomes...

...that combine to make 
individuals...

microarrays, 
genome sequencing

Chromatin state 
marker assays, 

ChIP-seq, ...

RNA-seq, 
spectroscopy, antibody 

binding 

Biomarker 
measurements

Clinical phenotype 
measurements

There is complex 
biology at all stages

Any complication that 
can happen, does 

happen!



Biology from GWAS

Non-coding variants Long-distance interactions in the genome
Changes to gene expression

Polygenic effects (lots of variants involved)

Pleiotropy (a variant affects lots of phenotypes at once)

Genetic interactions Host-pathogen interactions

Anything that can happen, does happen.
…and there is lots of data!

Repetitive DNA / repeat expansions

Genome structural variation
Genome evolution

Cell-type / tissue heterogeneity



Fine-mapping success stories
Fetal haemoglobin modifiers in sickle cell disease.  Gene editing is now possible! 



Lecture plan

• Recap from last lecture – GWAS and the 
common variant / common trait hypothesis

• How polygenic are traits anyway?

• The challenge of fine-mapping

• Summary



• Most human traits are highly heritable

• For ‘complex’ traits, the effects are made up of many genetic 
variants often with modest effects. 

• Traits vary in genetic architecture - sometimes up to tens of 
thousands of polymorphisms are involved!

• Fine-mapping is generally hard, but sometimes possible

• A major frontier is to understand the biology and translate these 
findings into clinically useful insights and predictions.

Conclusions and summary



Thanks!


