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Lecture plan

Recap from last lecture — GWAS and the
common variant / common trait hypothesis

How polygenic are traits anyway?

The challenge of fine-mapping



Recap

For many ‘complex’ traits, heritability seems to be due to lots
of variants across the genome with small effects
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This is the ‘common variant, common disease hypothesis’, first proposed in the 1990s.




We talked about the basic GWAS approach
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Basic idea: genotype as much genetic variation as possible in disease
cases and controls. Then estimate the relative risk of each variant.

. P(disease|genotype G) Measures the association between genotype and phenotype.
Relative risk = . : "
P(disease|genotype g) Estimated as an odds ratio in the study

I statistical evidence is strong that RR # 1, we may have found an
association.

Rely on LD patterns to access associations
even if we didn't type the causal genetic
variant.
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SNPs across the genome

The genome-wide association study design really can find

these common genetic associations




Consolidation question

Multiple Sclerosis GWAS Browser o
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Visit the above site and make sure you understand what is shown. Pick a signal and try to work
out

- What is the sample size?

- How strong was the evidence?

- Does the genotyping look accurate?

- Does the association follow LD patterns as you’d expect?

- What is the estimated effect size?

- Did it replicate? How do discovery and replication effect sizes compare?

- What genes are nearby? Can you figure out what they do? (Warning: this can be a time sink!)


https://www.chg.ox.ac.uk/wtccc2/ms/

Consolidation question from last lecture

WTCCC2 GWAS Of multiple sclerosis (9,772 cases and 7,376 controls).

For further information about terms used below, hover ) ) chri rs11581062
over the red question marks.
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http://www.well.ox.ac.uk/wtccc2/ms/

Dealing with population structure

Answer: very strong confounding by
population structure / sampling

# cases /
# controls
N
Case/control
sampling

»”

Solution:

1. Use genome-wide genotypes to estimate genetic
relatedness between samples

2. Include the relatedness as a covariate in the
association test

Matrix of relationships
between samples



Using regression to test for association
(instead of the 2x2 table method)

1. Logistic regression including 2. Linear mixed model
principal components

outcome ~ genotype + PCs outcome ~ genotype +

Include a genetic relatedness matrix computed from
genome-wide genotypes in the association test

Finland
Sweden
Norway
Denmark
Australia
NZ

UK
Germany
Belgium

rland Uses the entire matrix of relationships

USA
France
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Italy
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Controls

Plot of first two principal components obtained
from the genetic relatedness matrix

Uses just the strongest directions of variation
in relatedness (population structure) Most p-values are now not inflated
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What happened next?

I African

[ African Am./Caribbean
[ Asian

[ European

[ Hispanic/Latin American
I Other/mixed

Study

WTCCC study sample size

Multiple sclerosis study

2007 2009 2011 2013 2015 2017

Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019

NHGRI GWAS Catalog: https://www.ebi.ac.uk/gwas/
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GWAS went large scale
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GWAS went large scale

I African

[ African Am./Caribbean
[ Asian

[ European

[ Hispanic/Latin American
I Other/mixed

Interim
(150k)

l Study

WTCCC study sample size

Multiple sclerosis study

2007 2009 2011 2013 2015 2017

Mills & Rahal, “A scientometric review of genome-wide association studies”, Communications Biology 2019

NHGRI GWAS Catalog: https://www.ebi.ac.uk/gwas/
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Prospective cohort studies

A new crop of studies aims to create a database of deep

genotype, phenotype, and exposure data across large cohorts of

individuals sampled from the population or from health services.
DEIES

. S W, CHINA KADOOR/E
CARIT & GENI

CARIYGENE BIOBANIK
PEREANBREAL 5
{ CartaGene (Canada) “

THE PRECISION MEDICINE INITIATIVE

China Kadoorie Biobank
Precision Medicine Initiative (US)

biobank’

UK Biobank

The 100,000 genomes project (UK)



uk
biﬂbank http:/fwww.ukbiobank.ac.uk/
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W . lood, sal- 1) underway to develop scglab!e
monitoring gl - ,,,ﬁ;?*;ochemica, approaches that can characterize in
markers detail different health outcomes by

Whole body dual-energy . .
¥ray absorptiomelry cross-referencing multiple sources of
of bones and joints o 5 . y
Biiiabaana coded clinical information
|mpedance measures
Bycroft et al Nature 2018




biobank’

The UK biobank has let us discover associations with 100s
of traits across the whole genome, and indeed many
variants are associated with many traits.
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Number of statistically significant assocaitions among 717 traits
Canela-Xandri et al, http://geneatlas.roslin.ed.ac.uk/phewas/



http://geneatlas.roslin.ed.ac.uk/phewas/

... S0 how polygenic do traits get?

1
JNXf(1 = Fxeo(1 — ¢)

Standard error =

To discover this we would
need a large sample size!



GWAS of height in 5.4 million individuals

bioRxiv preprint doi: https://doi.org/10.1101/2022.01.07.475305; this version posted January 10, 2022. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

A Saturated Map of Common Genetic Variants Associated with Human Height
from 5.4 Million Individuals of Diverse Ancestries

Height is the epitome of
polygenicity

Common SNPs are predicted to collectively explain 40-50% of phenotypic variation in
human height, but identifying the specific variants and associated regions requires huge
sample sizes. Here we show, using GWAS data from 5.4 million individuals of diverse .
ancestries, tha hat are significantly associated with height It CIaImS to map

account for nearly all of the common SNP-based heritability. These SNPs are clustered essentia”y a” Of the

within 7,209 non-overlapmg- geno-mlc segments w1tl-1 a- medlar! size of ~90 kb, covering common mutati ons th at
~21% of the genome. The density of independent associations varies across the genome and . .

the regions of elevated density are enriched for biologically relevant genes. In out-of- determ|ne human he'ght
sample estimation and prediction, the 12,111 SNPs account for 40% of phenotypic variance

in European ancestry populations but only ~10%-20% in other ancestries. Effect sizes,

associated regions, and gene prioritization are similar across ancestries, indicating that

reduced prediction accuracy is likely explained by linkage disequilibrium and allele There are 1 2 111 Of them
frequency differences within associated regions. Finally, we show that the relevant - .
biological pathways are detectable with smaller sample sizes than needed to implicate and (grouped into FGQIOHS)
causal genes and variants. Overall, this study, the largest GWAS to date, provides an they cover 21 % of the
unprecedented saturated map of specific genomic regions containing the vast majority of

common height-associated variants. genome'

Yengo et al bioRxiv (2021) https://doi.org/10.1101/2022.01.07.475305



GWAS of height in 5.4 million indiiduals

—— mean genome-wide density: 2 (LOCO-S.E. 0.14)
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Each dot represents one of the 12,111 quasi-independent
genome-wide significant (GWS; P<5x10-8) height-associated SNPs identified using approximate conditional and joint multiple-SNP (COJO) analyses of our trans-
ancestry GWAS meta-analysis. Density was calculated for each associated SNP as the number of other independent associations within 100 kb. A density of 1 means
that a GWS COJO SNP share its location with another independent GWS COJO SNP within <100 kb. The average signal density across the genome is 2 (standard error;
S.E. 0.14). S.E. were calculated using a Leave-One-Chromosome-Out jackknife approach (LOCO-S.E.). Sub-significant SNPs are not represented on the figure.

12,111 SNPs in regions covering ~21% of genome



Fasting glucose
Fasting insulin .

EC Trait category

Neurological

Anthropometric
A Immune-related
¢ Metabolic

Hematopoietic

FI
*

The wealth of GWAS data
Average allows studies that
effect [ estimate the genetic
size. 0 * architecture of different
107 1 traits.

10—0.5 -:

Crohn's Here — "polygenicity (x
disease axis) versus average
effect size (y axis)

Schizophrenia
M | M T | NP T M T

10°° 107 107 1072
How polygenic?
(Fraction of genome associated.)

Zhu and Stephens, Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31
human phenotypes (2018) https://doi.org/10.1038/s41467-018-06805-x
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GWAS have clearly told us a great deal about the genetic
architecture of complex traits.

However, with some exceptions there has been less progress in
turning GWAS associations into concrete information about
biological processes, that can inform new therapies.

“‘Fine-mapping” = the process of narrowing down an
association to a single causal mutation linked to
biological mechanism.



Bipolar disorder
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E.g. this SNP associated with
Crohn’s disease :

Is common (about 63%
allele frequency in
European populations)

Has a modest effect size
(RR =~ 1.2, i.e. about a 20%
increase in risk)

s strongly associated (this
association is now well
replicated).
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Not clear how this works
biologically. E.g. there’s no
gene under the association
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Among 45 likely
causal variants:

13 protein-coding
changes

3 = disruption of
transcription factor
binding

10 = tissue specific
epigenetic marks

Fine mapping is hard!

Attempted fine-mapping of 139 signals of
association with inflammatory bowel disease
(Crohn’s disease and Ulcerative Colitis), using
genotype data on 67,852 individuals, and data
on the functional state in relevant cell types.

Huang et al Nature 2017 ...with mixed success:

Number of signals/region:

1

68
F—— 139 independent signals identified in 94 regions

v

Number of variants in each signal:

26 23 |
116 signals fine-mapped to <50 variants ——— 1

v

bability for variant to be causal:
p0-95% 10-50%

45 variantg have
probability >50%

srobability >50% 139 signals 97 regions

45 variants have

At least 21 loci could not be assigned a plausible function despite the extensive data.



Fine mapping is hard!

Attempted fine-mapping of 139 signals of
association with inflammatory bowel disease
(Crohn’s disease and Ulcerative Colitis), using
genotype data on 67,852 individuals, and data
on the functional state in relexzat cell types.

Among 45 likely
causal variants:

13 protein-coding
changes

3 = disruption of
transcription factor
binding

10 = tissue specific
epigenetic marks
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At least 21 loci could not be assigned a plausible function despite the extensive data.



Another example - IBD

ARTICLE

doi:10.1038/nature22969

Fine-mapping inflammatory bowel
disease loci to single-variant resolution “This analysis [..] leaves 21 non-coding variants, all of
Hailiang Huang!?#§, Ming Fang™*#, Luke Jostins>®*, Masa Umicevi¢ Mirkov’, Gabrielle Boucher®, Carl A. Anderson’, w h I C h h ave > 5 0 % p ro b a b I / It I es o f b e I n g causa / [ . ] t h a t

Huang et al Nature 2017 are not located within known motifs, annotated
elements, or in any experimentally determined ChlP-
seq peaks or eQTL credible sets[..]. While we have
identified a statistically compelling set of genuine
associations (often intronic or within 10 kb of strong
candidate genes), we can make little inference about
function.[...]. That most of the best-refined non-coding
associations have no available annotation is perhaps
sobering with respect to how well we may currently be
able to interpret non-coding variation in medical
sequencing efforts. [...]

CD hit region, chromosome 5
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The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...




The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...

...inside cells, where it is
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and other molecules...
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individuals...

...that affect how the cells
behave, forming different
organs...



The circle of genetic causation

DNA gets physically
packaged up into
chromosomes...
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...whose success is affected
by the traits they have...
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The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new
generations...

...whose success is affected
by the traits they have...

?—
...that gets physically
packaged up into
chromosomes...
There is
/ .
f/\\/f\\/’w complex biology

\\ 22 at all stages
< —

(.

\ / ...that combine to make
individuals...

—

...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new

generations ...whose success is affected

by the traits they have...
?—

microarrays,
genome sequencing

Clinical phenotype
measurements

...that gets physically

packaged up into

chromosomes... )
There is complex

biology at all stages
//\\//\\//\'\//\\//\’\// Biomarker

/ . measurements
D > And we can measure it.
‘\‘ / Chromatin state

<Y marker assays,
\y ChiP-seq, ...

(.

ANAFEET, ...that combine to make
spectroscopy, antibody e
binding Indiviauais...

—

...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




The circle of genetic causation

Fine-mapping example 1:
genetic complexity

ROy

/ ...that combine to make
individuals...




Plasmodium falciparum VS humans



GWAS of susceptibility to severe malaria

Study samples Whole-genome sequences
Group Cases Controls TOTAL Group Trios Duos Other TOTAL

Africa ® Gambia

B Gambia 2567 2605 5172 FULA 31 100

W Mali 274 183 457 ) 3 JOLA 32 100

M Burkina Faso 733 596 1329 = ¢ MANDINKA 33 100

B Ghana 399 320 719 WOLLOF 32 98

W Nigeria 113 22 135 ¢ ® Burkina Faso

B Cameroon 592 685 1277 MOQOSSI 0 57

B Malawi 1182 1317 2499 ® Cameroon

B Tanzania 416 403 819 ‘ BANTU 5 31
Kenya 1681 1615 3296 ] SEMIBANTU 8 7 32

Asia ’ ® Tanzania

M Vietnam 718 546 1264 CHAGGA 21 80

Oceania PARE 22 7 77
PNG 402 374 776 WASAAMBA 23 90

GWAS in 17,000 severe malaria cases and population controls + whole-genome sequences
From 12 sites in Africa, Oceania, and SE Asia. for imputation
Genotyped on the lllumina Omni 2.5M array

Malaria Genomic Epidemiology Network. “/nsights into malaria susceptibility using genome-wide data
on 17,000 individuals from Africa, Asia and Oceania”
Nature Communications (2019). https://doi.org/10.1038/s41467-019-13480-z

Malaria www.malariagen.net



https://doi.org/10.1038/s41467-019-13480-z

Natural resistance is driven by red blood
cell variation

New signals - Known associations at O
discovered by GWAS ; +~ blood group and sickle trait
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Natural resistance is driven by red blood
cell variation

New signals - Known associations at O
discovered by GWAS ; +~ blood group and sickle trait
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SNPs on chromosome 4 are associated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
T 2,984 Kenyans
0 MalariaGEN, Nature 2015
L .
S - :
) .
D oA .
ge! . 2
b Ez.
VPR (VRRIN.
H— FREM3
F—H#t GAB1 HGYPB
im USP38 W SMARCA5H GYPE HGYPA fi-
144.0Mb 144.5Mb 145.0Mb 145.5Mb

Chromosome 4



The association has quite large effect

Gambia
Malawi
Kenya

Combined discovery

Gambia --
Mali
BurkinaFaso
Ghana
Cameroon
Malawi ——_.-__E
Tanzania ————
Kenya e

Combined replication - . P=5.1x10°

1/4 1/2 1 2 4

Meta-analysis 4 . P=9.5x10"
OR=0.67 (0.6-0.76)

> 30% protective effect per copy of the derived allele
1

e error(og OR) =~ e T xg =)
X —J)X -




Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

- Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?



SNPs on chromosome 4 are associated with
proection against severe malaria

Signal identified and replicated 4,921 Gambians
(rs186873296) 2,516 Malawians
< 2,984 Kenyans
0 MalariaGEN, Nature 2015
L .
0 o o
B/ . e % .:
8 Uy o o '&‘2’0“‘;
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] )
H— FREVIS
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Glycophorins!

144.0Mb 144.5Mb 145.0Mb 145.5Mb



Glycophorins encode the ‘'MNS’ blood group

(antigenic molecules on RBC surface)
Glycophorins

Outside red blood
cell

Red blood cell
membrane

Actin

Spectrin

Adducin Intracellular

Inside red blood
cell

Grimes and Slater, The Inherited Metabolic Diseases, 1994



Glycophorins are receptors for P.falciparum
during red blood cell invasion

P. Falciparum parasite

P. falciparum membrane

Erythrocyte membrane

red blood cell

Miller et al, J. Exp. Med 1979 Tolia et al, Cell 2005

Glycophorin A



Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
- Good candidates for the causal mutation(s)?
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Can we finemap?

We had an exciting association. But fine-mapping has
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Structural variants create deletions,
duplications, and hybrid genes

The MNS blood
group is highly
diverse, with over 45
known antigens.

Encoded by single
nucleotide

polymorphisms and
structural variants
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Can we finemap?

We had an exciting association. But fine-mapping has
proven to be difficult for many GWAS loci.

To hope for success we might need:

¥ - Good candidates for the functional gene?
¥ - Good candidates for the causal mutation(s)?



Steps to fine-map

Step 1: type or sequence as much of the genetic
variation in the region as possible — hope to catch the
causal mutation.

Step 2: re-analyse the association.

Step 3: look for functional mutations



A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase Il reference panel
- plus our newly-sequenced samples

a
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A regional reference panel capturing structural variation

We used the >3,600 samples including
- 1000 Genomes Project Phase Il reference panel
- plus our newly-sequenced samples

a
Whole-genome sequences
trios duos other TOTAL

...to call SNPs and indels and
structural variation.

® Burkina Faso
MOSS!

® Cameroon
BANTU
SEMIBANTU 8

® Tanzania
CHAGGA 21
PARE 22
WASAAMBA 23

o NN o w o -0 = =

Sequencing

depth

(this sample has a deletion in this region) _
...our method infers the copy number



The region turned out to have a lot of structural variation

Deletions Duplications
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14% of Africans carry a CNV affecting these genes



The region turned out to have a lot of structural variation

Deletions

DEL1
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14% of Africans carry a CNV affecting these genes
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Before fine-mapping
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Original GWAS result



After fine-mapping
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Result after incorporating genetic variation discovered in sequenced samples.



After fine-mapping
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Confirming structural variants using cluster plots

microarray intensities

This is how a microarray
cluster plot should look: 3
clusters for AA/AB / BB

genotypes



Confirming structural variants using cluster plots

Actually this signal was evident in our cluster plots

microarray intensities

This is how a microarray What we saw in this region
cluster plot should look: 3

clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Still true that nothing seemed to be functional.
What next?

Protective: relative risk ~ 0.6

microarray intensities

Not
protective:
RR~0

o

This is how a microarray What we saw in this region
cluster plot should look: 3

clusters for AA/AB / BB
genotypes



Confirming structural variants using cluster plots

Omni 2.5M
intensities

duplicated

H-H—'l GYPB

We were able to use cluster plots to confirm individuals in our
GWAS really do carry the complicated structural variant “DUP4”.

DUP4 is pretty complicated — what could it be?



What is DUP4?

“Normal” haplotype:

GYPE GYPB GYPA

Human red blood cell

Leffler et al, “Resistance to malaria through structural variation of
red blood cell invasion receptors”, Science (2017)

https://doi.org/10.1126/science.aam6393
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What is DUP4?

“‘Normal” haplotype

e | -~ mrm

DUP4 haplotype:

D D-l]—l]—l > Ehims

600 kb

Human red blood cell

Leffler et al, “Resistance to malaria through structural variation of
red blood cell invasion receptors”, Science (2017)

https://doi.org/10.1126/science.aam6393

Article

Red blood cell tension protects against
severe malariainthe Dantublood group

Functional followup study

Published online: 16 September 2020

https://doi.org/10.1038/541586-020-2726-6
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Dantu is globally rare...

The Dantu blood group has been found in:

1in44,112 Londoners”
Oin 1,000 Germanst
1in 320 African Americanst

0in 2870 Gambians*®



..but found at high frequency in east Africa

The Dantu blood group has been found in:

1in44,112 Londoners’

Oin 1,000 GermansT

1in 320 African Americanst
Oin 2870 Gambians®

1in12 Malawians*

1in6 Kenyans (from the Kilifi region)*

) ' Malawi Tanzania Kenya
Allele frequency. Gambia BurkinaFaso = Ghana Cameroon ‘:’ ‘:l

West Africa <— East Africa



The circle of genetic causation

Fine-mapping example 2:

RO . :
expression complexity

/ ...that combine to make
individuals...




Natural resistance is driven by red blood
cell variation

7 8 9 10 11 12 13 14 15 16 17

Position in genome




Evidence for association
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Association near 2"? exon of ATP2B4

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb
T T T T T T T

[

r<=0.1 |D <= 0.5 rs4951377:203658471:A:G ® |mputed varignt

?>01! DY > 0.5 @ O + Omni 2.5M variant

> 031 D'l > 0.6 A Sequenom-typed variant

2505, D' > 0.7 o Imputed SV |
®r>07, °|D|>08 !
® 2509 ¢ e D>o09

i

it ATP28

203.60Mb 203.62Mb 203.64Mb 203.66Mb 203.68Mb 203.70Mb 203.72Mb
Position on chromosome 01

The associated SNPs cover a region around the second exon.
None of these SNPs make changes to the protein.
What could be going on?

“Canonical”
gene model for
ATP2B4

ATP2B4 = a red
cell “calcium

pump”



Cartoon of a gene

Direction of transcription
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Cartoon of a gene
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Cartoon of a gene

—
Messenger RNA: — ' — — . —
e -

Transcription to mMRNA
Direction of transcription
_—

- EE—a—I—
\

The promoter region.

In order for this to take place, the DNA upstream
of the gene must be accessible and helpers known
as transcription factors must be able to bind.



Two ways to look at transcription

Genes
I ~
Long-range regulatory elements Promoters N\ N\ .
(enhancers, repressors/silencers, insulators) Transcripts Can IOOk at Chromat|n

state

RNA expression

2== RORDMAP .
EpIgENOMICS




ATP2B4 is widely expressed...

1st exon 2nd exon
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Chromatin states in 130 cell types
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Data from ENCODE / Roadmap Malaria-associated region



...but shows chromatin differences in RBCs

exon
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Proerythroblasts

Malaria-associated region

Data from Xu et al Dev Cell (2012)



ATP2B4 is widely expressed...

Measured RNA transcription (RNA-seq)

1st exon 2nd exon
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ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon

GENCODE v19 F——
transcripts

ESC!
ES-deriv’
Epithelial’

HSC & B-cell’
Blood & T-cell’
Neurosph'’
Heart'

Other’

Brain'
Digestive'
Muscle! : s o
Thymus' __dll
ENCODE2012 (except K562)'
K5621

|
|

[ N

(111

11 1T

[

aa b

o | A b1

il . m“
[T | TP ¥ (W
I ) rwvwr]

| i
- e i2 el
e Bire
P— ety
—all iy
ek [IV55Y
- s == a¥]

rl

|
L

proerythroblast?

early basophilic?

late basophilic?
orthochromatic?
polychromatic?

Bone marrow erythroblast?
Fetal liver erythroblast®

110011,

Red cells do not have nuclei, so to capture

MRNA expression in red cells, these studies
Erythroid cells show a different experimentally differentiated stem cells into
expression pattern. the erythroid lineage, and measured

transcription before enucleation.



ATP2B4 has an erythroid-specific transcript

Measured RNA transcription (RNA-seq)

1st exon 2nd exon
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Putting together data from a variety of sources suggests the existence of an alternative
transcription start site near the GWAS signal, but only active in erythrocytes. How can this be?




What is different about RBCs?
o*-——9—HE—1I—I1—Hl

The transcription of genes in red blood cells is controlled by a
particular set of transcription factors — a key one is GATAL.

GATA1 is named after the DNA motif it recognises:

v1.factorbook.org




GATA1 binds just upstream of 2"? exon

Measured GATA1 binding

1st exon 2nd exon
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GATA1 peaks .

ChlP-seq experiments show GATA1 binds just upstream of our new exon.
Moreover, one of the associated SNPs disrupts the GATA1 motif.




One of the malaria-associated SNPs disrupts the GATA site

c Association & }

signal I 11

o

b Known transcripts
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Erythroid BFU:
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fromtwo o e A S —
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= = Fetal liver erythroblast’
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circulating erythrocytes?*

O GATA1 peaks =

e

e o o GGAGCGGTAAGATA- e  (malaria-protective allele)
10715451 | | GGAGCGATAAGATA. . . (rariariskalele

RNA * Risk allele creates GATA motif

expression and is associated with increased

ATPZ2B4 expression — of the
erythroid transcript




Does this really hold up?

Prediction: the alternative (=risk) allele creates a GATA1 site. It
would increase expression of ATP2B4 starting at the new exon.
But it wouldn’t affect expression of the ‘usual’ 15t exon.

per-exon eQTL effect?

rs10751451 C/T
(n=24 erythroblasts)




Functional hypothesis

ATP2B4 encodes a calcium pump (called PMCA4) in the RBC membrane.
It acts to remove calcium from the cell.

When the parasite invades, the membrane gets inverted around the
parasite, so presumably PMCA4 must also get inverted.

This might explain why lower expression of the
gene provides protection —since parasites require
calcium to grow effectively.

This is a hypothesis - not
experimentally tested (yet)!

PMCA4
Ca* /

Zambo et al, Cell Calcium 2017



The circle of genetic causation

...passing on DNA, with
mutations and
recombination, to new

generations ...whose success is affected

by the traits they have...
?—

microarrays,
genome sequencing

Clinical phenotype
measurements

...that gets physically
packaged up into

chromosomes... There is complex
biology at all stages

//\\//\\//\'\//\\//\’\// Biomarker

Any complication that measurements
S0

can happen, does

‘\\ / Chromatin state happen!

<Y marker assays,
\y ChiP-seq, ...

(.

ANAFEET, ...that combine to make
spectroscopy, antibody e
binding Indiviauais...

—

...that affect how the cells
behave, forming different
organs...

...inside cells, where it is
transcribed to form proteins
and other molecules...




Biology from GWAS

Non-coding variants Long-distance interactions in the genome

Changes to gene expression
Polygenic ef

Cell-type / tissue heterogeneity

fects (lots of variants involved)
Plelotrop}/ (a variant affects lots of -

notypes at once)

Genetic interactions Host-pathogen interactions

Repetitive DNA / repeat expansions

Genome structural variation
Genome evolution

Anything that can happen, does happen.
...and there is lots of datal



FIne-mapping success stories

Fetal haemoglobin modifiers in sickle cell disease. Gene editing is now possible!

CRISPR-Cas9 Gene Editing for Sickle Cell
Disease and 3-Thalassemia

H. Frangoul, D. Altshuler, M.D. Cappellini, Y.-S. Chen, J. Domm, B.K. Eustace,
J. Foell, J. de la Fuente, S. Grupp, R. Handgretinger, T.W. Ho, A. Kattamis,
A. Kernytsky, J. Lekstrom-Himes, A.M. Li, F. Locatelli, M.Y. Mapara,

M. de Montalembert, D. Rondelli, A. Sharma, S. Sheth, S. Soni,

M.H. Steinberg, D. Wall, A. Yen, and S. Corbacioglu

Transfusion-dependent B-thalassemia (TDT) and sickle cell disease (SCD) are se-
vere monogenic diseases with severe and potentially life-threatening manifesta-
tions. BCL11A is a transcription factor that represses y-globin expression and fetal
hemoglobin in erythroid cells. We performed electroporation of CD34+ hemato-
poietic stem and progenitor cells obtained from healthy donors, with CRISPR-Cas9
targeting the BCL11A erythroid-specific enhancer. Approximately 80% of the alleles
at this locus were modified, with no evidence of off-target editing. After undergo-
ing myeloablation, two patients — one with TDT and the other with SCD — re-
ceived autologous CD34+ cells edited with CRISPR-Cas9 targeting the same BCL11A
enhancer. More than a year later, both patients had high levels of allelic editing in
bone marrow and blood, increases in fetal hemoglobin that were distributed pan-
cellularly, transfusion independence, and (in the patient with SCD) elimination of
vaso-occlusive episodes. (Funded by CRISPR Therapeutics and Vertex Pharma-
ceuticals; ClinicalTrials.gov numbers, NCT03655678 for CLIMB THAL-111 and
NCT03745287 for CLIMB SCD-121.)




Lecture plan

Recap from last lecture — GWAS and the
common variant / common trait hypothesis

How polygenic are traits anyway?
The challenge of fine-mapping

summary



Conclusions and summary

Most human traits are Aighly heritable

For ‘complex’ traits, the effects are made up of many genetic
variants often with modest effects.

Traits vary in genetic architecture - sometimes up to tens of
thousands of polymorphisms are involved!

Fine-mapping is generally hard, but sometimes possible

A major frontier is to understand the biology and translate these
findings into clinically useful insights and predictions.
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Thanks!




