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ABSTRACT

Motivation: It is well known that neighbouring nucleotides in
DNA sequences do not mutate independently of each other.
In this paper, we introduce a context-dependent substitution
model and derive an algorithm to calculate the likelihood of
sequences evolving under this model. We use this algorithm
to estimate neighbour-dependent substitution rates, as well as
rates for dinucleotide substitutions, using a Bayesian samp-
ling procedure. The model is irreversible, giving an arrow to
time, and allowing the position of the root between a pair of
sequences to be inferred without using outgroups.

Results: We applied the model on aligned human-mouse
noncoding data. Clear neighbour dependencies were obser-
ved, including 17 — 18 fold increased CpG to TpG/CpA rates
compared to other substitutions. Root inference positioned
the root halfway the mouse and human tips, suggesting an
approximately clock-like behaviour of the irreversible part of
the subsitution process.
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INTRODUCTION

Most current stochastic models for the evolutionary nucleotide
substitution process in DNA sequences assume that neighbou-
ring sites evolve independently. This considerably simplifies
calculations, since under this assumption, the likelihood is
the product of individual site likelihoods. However, there
is ample evidence that independence is violated (Karlin and
Burge (1995)), for example by the well-known methylation-
induced rate increase of C to T (and G to A) substitutions in
vertebrate CpG dinucleotides. The importance of neighbour
dependencies in the substitution process has long been recog-
nised, and several ways of modelling these dependencies have
been proposed. For example, Siepel and Haussler (2003) show
that a Markov chain along a pair of sequences fits sequence
data substantially better than a series of independent pairwise
nucleotide distributions (a “zeroth-order” Markov chain) do.

A natural model for context-dependent substitutions is
one which assigns rates to every possible dinucleotide-to-
dinucleotide substitution, which then apply to all overlapping
neighbouring nucleotide pairs in a sequence. This model,

referred to as the “dinucleotide model”, is arguably the
simplest possible general evolutionary model that takes neigh-
bour dependencies into account, and captures (neighbour
independent) dinucleotide substitutions as well. One of its
essential features is that long-range dependencies between
sites immediately arise, due to the possibility of overlapping
hits. Because of this ‘contagious dependence’, this model is
harder to analyse than independent-site models. Previous stu-
dies by Jensen and Pedersen (2000) and Arndt et al. (2003)
used similar explicit evolutionary models, both in the nucleo-
tide and codon contexts, and focussed primarily on the relation
between the rate matrix and the equilibrium sequence distri-
bution. As the equilibrium distribution contains only partial
information on the substitution rates, this can be used only
for estimation of sparsely parameterised models. For richer
modelsitis necessary to have a method for calculating the like-
lihood of observing a pair of homologous sequences. Pedersen
and Jensen (2001) developed an MCMC approach for a codon
model with neighbour dependencies to estimate this like-
lihood. Their method involves no approximations, but does
require potentially long sampling runs for reliable likelihood
estimates, making it less suitable for parameter inference.
Another method was introduced by Whelan and Goldman
(2004), who use a “‘mean field” approach to recover site inde-
pendence, and use this to infer dinucleotide substitution rates
in a codon model. von Haeseler and Schoninger (1998) use
a reversible model based on observed nucleotide (or amino
acid) doublet frequencies, and estimate the expected num-
ber of mutations as a function of Hamming distance using
MCMC. The recent paper by Siepel and Haussler (2004) is
perhaps closest in its aims to the present paper. They use a
Markov model on a phylogenetic tree, parameterized by a
dinucleotide rate matrix and an independent-site equilibrium
sequence distribution, and estimate substitution parameters
using an EM procedure.

In this paper we present a fast, analytic method for cal-
culating the joint likelihood of observing two homologous
sequences evolving under the dinucleotide model. This makes
it possible to infer parameter, either by maximum likelihood,
or in a Bayesian fashion. Our approach has the advantage of
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Fig. 1. lustration of the dinucleotide model. Horizontal bars indi-
cate instantaneous (rate) dependencies, grey areas indicate regions of
finite-time dependencies due to ‘contagious dependence’. The model
is parameterized by a 16 x 16 matrix M, specifying mutation rates
on dinucleotides. The matrix Rj, has dimension 4% x 4%, and corre-
sponds to M acting on nucleotides k and &+ 1 only, with no mutation
process acting on any other nucleotides. Formally, it is the ‘matrix
concatenation sum’ of the null matrix acting on the leftmost & — 1
nucleotides, the matrix M, and the null matrix acting on the remai-
ning L — k — 1 nucleotides (see Appendix). The full model has
rate matrix R = Ef;ll Ry, corresponding to the dinucleotide
substitution process acting on all L — 1 dinucleotides simultaneously.

using an explicit evolutionary (“process-based”) model, and
takes into account the equilibrium sequence distribution as a
function of the substitution rate parameters. WWe demonstrate
the method by estimating substitution rates and confidence
intervals on noncoding human-mouse data. The algorithms
involve some approximations, and we show by experiments
on synthetic data that mutation rates can be faithfully reco-
vered, using a Bayesian MCMC sampling approach, in the
parameter range corresponding to that of human-mouse data.
In contrast to most stochastic models used in evolutionary
biology, the proposed model is naturally irreversible. Rever-
sible models enjoy technical advantages, for instance, they
have roughly half as many parameters as irreversible models,
and have symmetry properties that are helpful for deriving
properties of such models, and in practical computations.
For example, Felsenstein (1981) coined the Pulley Princi-
ple, which states that the likelihood of sequences evolving
according to a reversible substitution model on a phylogene-
tic tree is independent of the position of the root, so that root
placement is only possible using an outgroup as reference.
However, there is no a-priori reason to assume reversibility,
since many biological processes have a distinct direction in
time, and this is certainly true for evolutionary processes. The
possibility of rooting trees under irreversibile models of sub-
stitution was noted before, see e.g. Yang (1994), but for single
nucleotide models the signal seems to be weak, especially in
non-coding DNA (data not shown). The proposed dinucleo-
tide model incorporates the profoundly directional CpG effect,
making the model strongly irreversible, and we show that it is
possible to infer root positions, even for just two sequences.
The paper is organized as follows. First we introduce the
model, and discuss some of its properties. We then use Baye-
sian MCMC sampling to infer the model parameters. First,
the method is validated by inferring parameters from syn-
thetic data. The same procedure is then used on two sets

of 100 kb non-coding human-mouse aligned sequence data
from human chromosomes 21 and 10. A discussion conclu-
des the paper. Finally, in the Appendix we formally define
the proposed model, and derive the algorithms for computing
the equilibrium distribution, the sequence-to-sequence like-
lihood, and the likelihood that two sequences have evolved
from an unknown common ancestor.

THE DINUCLEOTIDE SUBSTITUTION MODEL

We now introduce the ‘dinucleotide model’, a continuous-
time Markov model for nucleotide substitutions. The parame-
ters of the model are given by a 16 x 16 rate matrix M, whose
rows and columns are labelled by the 16 possible nucleo-
tide pairs, so that the matrix describes mutation rates from
any nucleotide pair to any other. These rates apply to each
of the L — 1 pairs of neighbouring nucleotides in a sequence
of length L simultaneously (see Fig. 1). The rate matrix of
the full model, denoted by R, specifies rates at which any
length-L sequence mutates into any other. This matrix has
has dimension 4% x 4%, but is very sparse; in fact R, ., the
rate at which sequence ¢ mutates into 7, vanishes unless ¢ and
T coincide apart from at most two consecutive nucleotides.
The dinucleotide substitution model introduces dependen-
cies between neighbouring sites, and the stationary sequence
distribution 7 (o) no longer factorises into a product of single-
nucleotide distributions as in the independent-site model (see
Appendix for an algorithm to compute the stationary distribu-
tion). The relation between the parameters of the model (the
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Fig. 2. Example of irreversibility in the dinucleotide model. Depic-
ted is part of the full Markov chain for sequences of length 4. In
this example, rates for the mutation of CG into TG or CA are
both 1.0 mutations per observed pair and per time unit, while every
other neighbour-dependent mononucleotide substitution occurs with
rate 0.1. The resulting equilibrium probabilities for the length-4
sequences are shown between brackets (see Appendix), and equili-
brium flows (in units of 10~* transitions per unit of time) are shown
alongside the arrows, which point in the direction of net flow. Two
rate parameters contribute to each single nucleotide substitution rate,
e.g. both CG — TG and GC — GT contribute to the GCGT —
GTGT transition, so that the net flow at equilibrium along the edge
GCGT-GTGT is .00160 x (1.0 + 0.1) —.00475 x (0.1 +0.1) =
.00081. This violation of “detailed balance” implies irreversibility;

for example, the cycle GCGT — GTGT — GGGT — GCGT is
more likely to occur than its reversal, giving a definite direction to
time.
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Fig. 3. Estimated mononucleotide substitution rates (dependent on unchanged right neighbour [top row]; left-neighbour dependent rates are
fixed by strand reversal symmetry), total mononucleotide rate (o) and total dinucleotide rate (p2). Superscripts indicate one standard deviation
in the last digit(s). (a) Synthetic data; true mononucleotide rates: CG — TG, 2.40; all others, 0.075. (b) Chromosome 21 and (c) 10.

coefficients of M) and the reversibility of R is more compli-
cated than for independent-nucleotide models, as it involves
this equilibrium sequence distribution. Even for a reversible
M (on length-2 sequences), the total matrix R is in general
irreversible. For example, M may specify detailed balance for
CG « TG state transitions if confined to length-2 sequences,
but state transitions of longer sequences that involve mutations
overlapping the C or G residue may disrupt detailed balance
by creating additional CG dinucleotides, leading to cycles in
the equilibrium flow graph (see Fig. 2).

The matrix R is far too big to use explicitly. It turns out
that it is possible to compute exp(Rt),. -, the probability that
sequence o evolves into 7 in time ¢, without computing the
matrix exponential explicitly, through a dynamic program-
ming recursion that uses the structure of R. Exact results still
involve large matrices, and approximations are necessary. Our
approximation consists of ignoring all terms related to multi-
ple substitutions involving 4 or more consecutive nucleotides.
Such events comprise at least 3 independent ‘overlapping’
substitutions, so that the leading error term is cubic in the
divergence time and mutation rate. To validate the approxi-
mation in the parameter range of interest, we do parameter
inference on synthetic data.

EVALUATION AND RESULTS

For the substitution model, we used only a subset of the
240 free parameters in the matrix M. The symmetry of the
substitution process under reverse-complement means that
all mononucleotide substitutions can be described by the

4 x 4 x 3 = 48 right-neighbour rates only. General dinucleo-
tide substitutions would require another 80 parameters, but
since such substitutions are rare, reliable parameter inference
requires much input data, and for this reason we use a single
dinucleotide substitution rate parameter, 49 parameters in all.
Synthetic sequence data was produced by simulating the
dinucleotide substitution model on a 100 kb sequence. We
chose parameters to roughly mimic the parameters expected
for human-mouse data, namely, a mononucleotide substitu-
tion rate of 0.075 for all substitutions except CG — TG (and
CA) which occur with rate 2.4. Summing over the implied
equilibrium sequence distribution yields a total mononucleo-
tide substitution rate of 0.502 substitutions per site and unit of
time. We chose a total dinucleotide substitution rate of 0.020
dinucleotide substitutions per site and unit of time. Since about
half as many substitutions have occurred in humans compa-
red to mice since divergence (E. S. Lander et al. (2002)), we
chose the root position to be 0.3 time units from the “human”
descendant, and 0.7 units from the “mouse” sequence.
Neutrally evolving aligned human-mouse sequence data
was prepared from BlastZ-aligned data (ftp://genome.ucsc.edu/-
goldenPath/10april2003/vsMm3/axtBest/). We applied a sim-
ple but stringent syntheny filter to remove any spurious hits,
then removed alignments that overlapped with genes (inclu-
ding introns and regulatory elements), that included repeats
(both transposons and tandem repeats), or for which the DUST
program (cutoff 16) annotated part of the alignment as a low
entropy region. We further removed CpG islands (defined as
250 bp windows containing in excess of 7.5% CpGs, inclu-
ding their 125 bp shoulders; this removed 1.0% of sequence).
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Fig. 4. Posterior density estimates of the root position. L eft: Results for synthetic data. The theoretical posterior (with rate matrix fixed to
correct values) is shown for comparison (dotted line); the smooth curve is the log likelihood. The sampled posterior is slightly broadened, due
to the co-sampling of rates together with the root position parameter. Right: Results for chromosomes 21 (solid line) and 10 (dotted line).

The remaining data was cut up into individual ungapped ali-
gnments. Since there is evidence that sequences shorter than
about 12 nucleotides cannot always be aligned correctly (data
not shown), we trimmed the alignments by removing the
leading and trailing 12 nucleotides, and subsequently remo-
ved alignments of less than 10 bases. Finally, we randomly
selected a &~ 100 kb subset of the resulting alignments. This
procedure was carried out for human chromosome 21 (101142
nt) and chromosome 10 (99563 nt).

Results

Parameter estimation was done by Bayesian MCMC sampling
running for 600.000 iterations, using flat priors for all parame-
ters. Estimated sample sizes were good at 300-500 for the log
likelihood, and typically 100 for the various matrix entries.

The rate estimates from synthetic data are shown in Fig. 3a.
The estimated total mono— and dinucleotide rates are within
one standard deviation of their true values. This is also true for
over 80% of the matrix entries, including the CG — TG rate
parameter, suggesting that the estimation method is unbiased.
The CG — AG and CG — GG rates come out high, probably
due to a combination of crosstalk from the high CG — TG
rate and the three-site approximation we use; with a lower
CG — TG rate no bias was observed (data not shown). The
estimated posterior density for the root position is shown in
Fig. 4a. The true root position is within one standard deviation
of the Bayesian estimate of 0.33 & 0.03.

Rate estimates based on human chromosome 21 (C21) and
chromosome 10 (C10) data are shown in Fig. 3b and c. The
estimates for the two chromosomes are broadly similar. The
CG — TG rates are higher than the average mononucleo-
tide rates by a factor 18 (C21; CpG abundance 0.93%) and 17
(C10; CpG abundance 1.06%). The total effective substitution
rate for C21, due to mononucleotide and dinucleotide substi-
tutions, is 0.469 + 2 x 0.016 = 0.501. Of this, 9.4 + 0.5%
is due to the CpG effect, and a further 6.4 & 0.8% is due to
dinucleotide substitutions. For C10,the total rate is 0.487, of

which 10.0 £ 0.5% is due to the CpG effect, and 6.2 & 0.8%
to dinucleotide substitutions.

Root positions for chromosome 21 and 10 were estimated
at 0.484 +0.014 and 0.510 £ 0.016 respectively. Fig. 4b plots
the posterior densities for both chromosomes.

Fig. 5 gives a reparametrised view of the rate estimates,
obtained by separating out the neighbour-independent and
neighbour-dependent substitution rates. For the synthetic data,
the latter are theoretically zero, but since rates are nonne-
gative, they have a non-Gaussian distribution with nonzero
mean. We used this parametrisation to test neighbour depen-
dence, by using synthetic data to estimate cutoff values for the
neighbour independent rates relative to their empirical stan-
dard deviation. A cutoff of 2.2 empirical standard deviations
was found to correspond to a 90% confidence level. As expec-
ted, the hypothesis of neighbour independence can be rejected
for the CG— TG substitution, and indeed for many more.

Discussion

We have introduced a context-dependent substitution model,
that enables direct estimates of neighbour-dependent and
dinucleotide substitution rates. The model is furthermore
time-irreversible, which allows root placement in the absence
of an outgroup.

We found strong CG — TG and CA substitution rates as
expected, 17 and 18 times above the average rate for other
dinucleotides, in agreement with previous estimates of a 10—
20 fold increase (Sved and Bird (1990)). Our results indicate
that the CpG-related substitutions accounts for about 10%
of all substitutions, while an estimate by Subramanian and
Kumar (2003) puts the CpG contribution to point substitutions
in primate intergenic DNA to ~ 20%. This twofold difference
may be partly explained by a different balance of ordinary vs.
CpG mutations in primates compared to rodents. In concor-
dance with this hypothesis, we find a lower incidence of CpGs
in our human chromosome 21 dataset compared to mouse,
although in chromosome 10, the proportions are similar.
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Fig. 5. Testing neighbour dependence of mononucleotide substitutions. The first matrix tabulates the neighbour-independent contribution to
the substitution rates (row, original; column, mutant), the other four tabulate rates depending on the (unchanged) right neighbour (indicated
at top). For each of these rates, the sample average was compared to the estimated standard deviation to indicate the confidence level at which
the zero-rate hypothesis can be rejected (indicated by colors; white corresponds to a 90% level threshold as calibrated on synthetic data). (a)
Synthetic data. Only the CG — TG rate is significantly non-zero, as expected. (b) Results for chromosome 21 and (c) chromosome 10.

The inferred relative contribution of dinucleotide substitu-
tions to the overall per-site substitution rate of about 6% in
presumably neutrally evolving human-mouse DNA is in broad
agreement to a study by Averof et al. (2000), who reported a
figure equivalent to 4%. However, Smith et al. (2003) convin-
cingly argued that this estimate could be upwardly biased by
rate variation along the genome, an effect we did not include,
but is known to be important. A partial filtering for such rate
variation resulted in a twofold reduction in the dinucleotide
rate estimates (data not shown), suggesting that the figure of
6% is an overestimate.

The inferred root position is almost halfway the human and
mouse tips. This is surprising since the mouse lineage has
attracted about twice as many point mutations as the human
lineage since divergence (E. S. Lander et al. (2002)). Since
the root inference is based solely on the irreversible signal in
the data, one possible explanation is that the mutation proces-
ses in mouse and human are not identical, even after scaling,
but are a combination of an evolutionarily relatively constant
irreversible process and a scaled reversible process reponsi-
ble for the majority of observed mutations. This hypothesis
can be tested by inferring substitution rates on both lineages
independently, using ancestral repeats.

The dinucleotide model will hopefully contribute to more
precise phylogenetic estimates, by the ability of root infe-
rence, and its more accurate modelling of the neutral substi-
tution process. We also intend to use it for a more accurate
estimate of the proportion of the human genome under purify-
ing selection, which is currently estimated at 5% (E. S. Lander

et al. (2002)). Finally, it may find application in the evo-
lutionary modelling of RNA base stacking, where context
dependencies are known to be important.
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APPENDIX
Formal definition of the model

To describe the model more formally, we introduce some nota-
tion. Let Q = {4, C, G, T} be the alphabet, and QF the state
space of sequences. The space of probability distributions over
QL is denoted by D, ¢ R*", and a probability distribution
v € Dy, is a vector assigning a probability to all 4% pos-
sible sequences in QL. We label the coordinates of Dy, by
sequences, so that if v € Dy and o € QF, v, is the proba-
bility of observing the sequence ¢. Similarly, for a matrix A4,
a matrix coefficient is written A, r, and is interpreted as the
rate at which sequence o mutates into 7 (for rate matrices), or
the probability that sequence o mutates into 7 (for probability
matrices). We write o7 for the concatenation of o and 7, and
we write o[i, j] for the subsequence o;0;41 - - - 0. For rate
matrices A, B acting on D;, and D; respectively, we denote
by A ® B (the matrix concatenation sum of A and B) the
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matrix acting on Dy, that has A acting on the leftmost &
residues of the sequence, so that it does not depend on nor
changes the rightmost / residues, while B independently and
simultaneously acts on the rightmost [ residues. In particular,
this operation is not commutative: A @ B # B & A, however
it is associative, A ® (B @ C) = (A @ B) & C. Formally,
(A® B)ps,qt = Ap,¢0s,t + Bs t6p 4, Whered, . = lifo =7
and 0 otherwise. Forexample, (A® B)s,q+ = 0forp # gand
s # t, since the rate for two independent mutations to occur
simultaneously vanishes. (Note that this matrix concatenation
sum is distinct from the direct sum of matrices, for which the
same symbol & is commonly used.) Finally, let Oy, be the null
matrix on Dy, then the rate matrix for the dinucleotide model
on a sequence of length L is

L-1
R:=Rp= Z O 1M 0L 1. (1)

k=1

Stationary sequence distribution

The dinucleotide substitution model introduces dependen-
cies between neighbouring sites, and the stationary sequence
distribution 7 (o) no longer factorises into a product of single-
nucleotide distributions as in the independent-site model. For
a certain class of reversible dinucleotide substitution models,
the stationary distribution is of Gibbs form (see Pedersen and
Jensen (2001)). It can be shown that this implies a (first order)
Markov structure for the stationary distribution, that is,

p(o; = aloroy - 0i-1) = p(o; = aloi_1) (2

In the general, non-reversible case, numerical experiments
seem to indicate that this Markov property breaks down, even
though the rate matrix involves only pairwise interactions.
It is unclear whether this is a result of the irreversibility of
the process, or whether reversibility and having a Marko-
vian stationary distribution are orthogonal features. At any
rate, there seems to be no simple expression for the sta-
tionary distribution, and we have to resort to a numerical
approximation.

The matrix R can be built explicitly for small K, and
we can find its stationary distribution numerically by solving
7Rk = 0. However, this will not properly approximate
the marginal distribution 7(o; - - -0+ x—1) for a length-K
subsequence in a longer sequence of length L, because no
substitutions overlapping the edges are taken into account.
Such edge effects can be taken into account as follows. First,
we note that although (2) is not satisfied exactly, a higher-order
Markov property does hold approximately:

P(Uz' = 04|U102 e 'Uz'—l) %p(Ui = Oé|0i—n : "o'z'—l); (3)

and the approximation converges exponentially in n. If we
know the exact marginal distribution = of length-K subse-
quences, we can use (3) to find the approximate conditional

distribution of ok 41,

Q

p(UK+1|0'1 "'O'K) p(UK+1|U2“'UK)
mos oxn)

Yaca (o2 oKQ)

This approximation is known as the “K-cluster approxima-
tion” in the physics literature (see Arndt et al. (2003); ben
Avrahamand Kéhler (1992)). We can now include edge effects
by having the rate matrix M act on o xo k41 by supposing
that o i1 is distributed according to (4), and similarly for the
left-hand edge. Formally, we add to R x the rate matrix RS,
describing the substitutions at the edges:

Ea,ﬂ 71—(0‘01 T JK—l)Ma01,ﬁT1
Yamlaoy--ok_1)
Za,ﬁ m(02 Ok )Mo yca,ricp
Oo[1,K1],7[1,K1]| >

Y o702 oKa) o

®)

(R%)J,T =

Oo[2,K],7[2,K]

+

where o and T are sequences in Q. From an initial guess for
m, we compute RS, and then solve n(Rx + R%) = 0 for
to get a better approximation. This procedure is repeated until
convergence, which is rapid. The only approximation is made
in (4), and since the correlation between nucleotides decreases
exponentially fast with their separation, this approximation
can be good even for moderate values of K. In this paper, we
use K = 3.

A recursion for sequence-to-sequence probabilities

Let v(t) be the probability distribution vector at time ¢, so
thatv(t), is the probability of observing sequence o at time ¢.
Since the rate at which sequence o mutates into sequence 7 is
R.,r, the time evolution of v is given by dv(t)/dt = v(¢)R.
The solution to this equation is v(t) = v(0) exp(Rt), and
the probability of sequence o evolving into 7 in time ¢ is
exp(Rt), . However, the matrix R is of dimension 4%, too
big for explicit computations. Write R; := O;_1 ® M &
Or_i_1,and recall that R = Y"=7' R;. We may expand the
matrix exponential in a Taylor series,

L—1 . L-1 2 .2
exp(Rt) = I + (ZR’) T (ZR’> R (6)
) i=1 ’

i=1

Many of the terms in the expression (3" R;)" commute;
indeed, R;R; = R;R; unless |i — j| = 1. We say that a
factor R;, - - - R;, is overlapping if it cannot be written as the
product of two commuting factors. For instance, R, R3R»
is overlapping, but R, R, R» R5 is not, since by swapping the
middle two factors (which commute), we get (R; Ry) (R4 R5),
a product of two commuting factors. In this way, a term can
be written uniquely as a product of commuting factors, which




themselves are overlapping. We define the length of an over-
lapping factor to be the number of sites it affects; e.g. the
length of Ry R» is 3 as it affects sites 1 through 3.

Now if a pair of neighbouring sites has never experienced a
substitution involving both nucleotides simultaneously, the
evolutionary histories of the left and right sequence parts
become independent, and the likelihood factorises into a
product. If we expand the full likelihood in terms of the
first position (counted from the right) where such a ‘break’
in the dependency structure occurred, we obtain a dynamic
programming recursion.

Mathematically, we factorise the terms of (6) into com-
muting factors. Consider all terms that contain in their
factorisation an overlapping factor F' = R;, - - - R;, of length
k that includes a factor Rz, 1. The sum of those terms can be
written as GF', and this product commutes by construction;
F only contains terms R; with ¢ > L — k, whereas G only
contains ¢ < L — k terms. In fact, we have

L-k-1 (n+1)tn+1
GILk (ZR) n+1)+

in L Lokl \p
== ILk+< ZRZ>1‘ (ZR,)2!+---

n n
= Z—GXP [(Rr—r ® Ox)t] = %GXP(RL—/J) ® I, (7)
where the binomial coefficients ("jg’“) count the number of
ways that k£ factors R; can be interleaved with the n factors
comprising F in the product (> R;)™**. Here we introduced
the matrix concatenation product, ®, which is defined by
(A ® B)ps,qt = Ap,¢Bs,, and the symbol I;, denotes the
identity matrix on Dy. Recall that R, is the rate matrix acting
on Dy, as defined in (1). If we denote by A the sum of all
overlapping factors F' of length &, including a factor % each,
then from (7) if follows that

exp(Rut) = eRn-1t @ A +eRn2t @ Ay +--- + A,,. (8)
(Here we included the identity matrix I; into A;.) Now
let P, be the probability that the length-n prefix of o
evolves into the same prefix of . More formally, P, =
[exD(Rat)],1,n],7(1,n)» Where we introduced the notation
oli,j] = 040i41---0;. Then we can turn (8) into the
following dynamic programming recursion:

P, = (Al)tfn,Tn Pno1+ (A2)<7[n—1,n],f[n—l,n]Pn72

+(A3)(r[n—2,n],r[n—2,n]Pn—3 +y (9)

with the initialisation P, = 1. To compute the Ay, we ite-
ratively solve for Ay, A,, ... in (8). For n = 1, the equation
readsexp(R1t) = Aj, and there is nothing to solve. Note that
R1 = 0 by definition (1), so that A; = I;. The other factors

are found recursively:
Ay = eRet — Rt g 4, (10)
Az =Rt — Rt g A — Rt @ A, (1)
Ay =eRet —eRet g 4] — et @ Ay — ™t @ A3 (12)

If these formulas are expanded in terms of the Ay, we get

Ay =€ — A ® A (13)

Az =eRt — Ay @ A — A ® Ay — A1 ® A1 ® A1 (14)

Ay =eRt — 430 A — A, @ Ay — A, @ As
—ARA404 -A @A A4
—ARAI®A -A QA QA QA (15)

Collected on the right-hand sides are all possible ways in
which a matrix on D;, can be built from a matrix concate-
nation product of matrices A;, ¢ < k. By definition, the terms
occurring in such products are not overlapping. Since the A;
contain all overlapping terms of length ¢ in the expansion of
exp(R;t), the terms in Ay, are those in exp(R ) except terms
that factorise, i.e. all overlapping terms of length &.

The recursion (9) is exact, but in practise only a few terms
can be included, since the dimension of the matrices A; grows
exponentially with 4. Fortunately, the matrix entries tend to
0 exponentially fast, and a good approximation can be obtai-
ned with a few terms. In the implementation, we used the
Padé algorithm to compute the matrix exponentials of the
non-symmetric matrices, see Moler and van Loan (2003).

Evolution from a common ancestor

The algorithm developed above computes the likelihood that
one sequence evolves into another. Most often however, we
are interested in the likelihood P, , that two sequences o and
7 have evolved from a common, unknown ancestral sequence
p. To do this, we compute the exponential of the matrix R for
both branches of the tree using ideas of the previous section,
and derive a recursion similar to Felsenstein’s reverse traver-
sal algorithm to sum over the ancestral nucleotide distribution.
In contrast to Felsenstein’s algorithm we cannot immediate-
ly carry out this summation, since the equilibrium nucleotide
distribution has dependencies along the sequence. Instead, we
compute the likelihood conditional on the last few ancestral
nucleotide positions, and sum over the ancestral distribution
conditional on these. This method can be extended to arbi-
trary trees, but for simplicity we only give the recursion for
the case of a two-leaved tree. Also, we truncate the formu-
las for the approximation up to the third term, and we use
the 3-cluster approximation for the equilibrium distribution.
These three-site approximations turn out to be sufficient for
our application.

The recursion is, again, conditioned on the shortest
sequence suffix that is independent of its prefix, but we now
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require this independence to hold on both branches simulta-
neously. Let P22 be the likelihood of the descendant sequence
prefixes ¢[1, n] and 7[1, n] to have evolved from a common
ancestral sequence prefix p[1,n] in time ¢, to respectively,
where the unobserved ancestral sequence is distributed accor-
ding to the equilibrium distribution, conditional on the last
two nucleotides p,,—1 pn, being Sa. Analogous to (9) we then
have the following dynamic programming recursion:

Pﬂa ZPWﬂlp ’7|ﬂ0£ o’n sTn
P‘S7 3|vB)BL:
Z Y 7'604 ( |718) o[n—1,n],7[n—1,n]

Zpeé 5P(Y1B)P(SIYB)P(elOV) B 5 1 2im 2.
€dy

(16)

Here p(y|fa) = n(vBa)/ > s 7(6fa) is the probability of
observing « conditional on its right neighbours Sa. This recur-
sion can be made more efficient, removing the double and
triple summations, by expressing the stationary distribution
in terms of a nucleotide pair further up along the sequence:

pPYy = PP ,BS . +Pf3°‘2235[2 Ll rfnetm T
Ba
Z 32p 7|5a)Bz[n 2,n],7[n—2,n] 7)
Pl = ZP” p(v|Ba) (k=0,1) (18)
Y

The B-factors represent the probabilities of the events that
yield the required dependencies on the two branches, and can
be computed by a procedure similar to that used in Sec. :

(62 —_— thl R1t2
B¢71,T1 - (6 )0701 (6 )Ot,ﬁ (19)
Ba — Rat1 Rata
BO’10’2,T1T2 - (6 )BaaUIUQ (e )ﬁa,7'17'2
_ BB a
B<71 sT1 BG’2,T2 (20)
vBa _ Rat1 Rata
010203,T1T2T3 (e )'Yﬂa70'10'20'3 (e )75(1;7'17'27'3
-BY Bo —_BB a  _BY B o
01,717 0203,7273 0102,T172° 03,73 01,71° 02,7277 03,73
(21)

To initialise the recursion, we deviate slightly from the
model and assume that the length-L sequence is embedded in
an infinitely long sequence. This ensures that the nucleotides
atthe edges are subjected to the same mutation rates as nucleo-
tides at other positions. This idea is implemented by setting
PP = 1fori < 1, and summing over the unobserved nucleo-
tides o; and 7; withé < 1in (16). Attermination, the recursion

(16) is executed for two additional steps,upton = L+2, simi-
larly summing over the unobserved nucleotides o; and 7'2 With
i > L. Finally, the likelihood is Py,» = >, 5 (o) PP (AT
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