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Discrete Fourier analysis is used to obtain simple proofs of certain inequalities
about finite number sequences determined by Fan, Taussky, and Todd [ Monatsh.
Math. 59 (1955), 73-90] and their converses determined by Milovanovic and
Milovanovi¢ [J. Math., Anal. Appl. 88 (1992), 378-387]. Using the same techni-
ques, the inequality

n—1

z (b —2by, 1 +biya)?

T 2"
< 2+2(:osn+1 Y b;
k=1
is proved for all real numbers 0 =b,, b, ..., b,, b, ; =0, which answers a question
raised by Alzer [J. Math. Anal. Appl. 161 (1991), 142-147]. Second, the method is

used to obtain the eigenvalues and eigenvectors of matrices (a;) that are rotation-
invariant, ie., that obey (a;) = (@, 1)+ 1) © 1994 Academic Press, Inc.

1. INTRODUCTION

In their 1955 paper [1], Fan et al. prove (among other things) the
following inequalities. If @, ..., a, are real numbers, and ¢y =¢,, , =0, then

n+1 n
—ap_P22(1—cos— ) 2 1
T @ p22(1-es ) (1)

=1

with equality if and only if a, = ¢ sin(kn/(n + 1)), where c is a real constant.
Second, under the hypothesis that ¢, .., a, are real and a,=0 one has

n n n
kgl (ak—ak_l)2>2(1—c032n+1>k§] az, 2)
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with equality if and only if a, = ¢ sin(kn/(2n + 1)), for k=1, ..., n. In 1983,
Redheffer [4] was able to prove the above inequalities using only elemen-
tary calculations.

In 1982 converse inequalities were found by Milovanovi¢é and
Milovanovi¢ [2]: if, again, a, .., a, are real numbers and ay=a,, =0,
then

n+1

y (ak—-ak_,)2<2<1+cos n
k=1

n+1

) T a2 3)
k=1

with equality if and only if @, =c(—1)*"'sin(kn/(n+1)) for k=1, .., n,
and if a,=0 and a,, ..., a, are arbitrary real numbers then

n 27z n
kz (ak—ak_1)2<2<l+coszn+1> Y a; (4)
=1

k=1

with equality if and only if a, = c(—1)*"'sin 2kn/(2n+1) for k=1, .., n.
Their proof is very intricate and difficult to follow. In a recent paper of
Alzer [3], a more elementary and shorter proof is given.

In this paper I use yet another method of proving the above inequalities,
using discrete Fourier transforms. This method has the asset that it is more
intuitive than the previous two, and that it suggests some interesting
generalisations.

The referee pointed out to me that the use of finite Fourier analysis for
proving inequalities like those above is not new. Schoenberg [5] proved a
theorem, using these methods, that is equivalent to Lemma 1, parts a—
(see below), stated in geometrical terms. These and other inequalities were
then used to solve several geometrical extremal problems. Another method
of proving this result can be found in a paper by Shisha [6]; there the
basic tool is a geometric inequality concerning points on an N-sphere.

2. NOTATION AND DEFINITIONS

First, some notation. A sequence of complex numbers is written as
(a,) e C", for instance (e>**). The index k runs from 0 to »— 1, where »
is the length of the sequence (which will always be clear from the context).
To simplify notation, the index k is taken modulo the length, so that
a,=a,, etc. You can think of the sequence as being infinite but periodic
with period n. Sometimes I use the term sequence to mean just an ordered
n-tuple of numbers, but if this is the case the numbers will not be written
with brackets surrounding them, the latter notation being reserved for
periodic sequences only.
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The difference operator 4 that operates on a (periodic) sequence of
length » is defined by the formula

Adlay)=(ay 1 —a)=(a,—ay,a—a,, ..,a, | —a, ,,8,—a, ;)

and yields another periodic sequence of the same length. Higher powers
of the difference operator are defined recursively: 4%(a;)=44(a,)=
(ax —2a,,,+a,,,), etc. By induction, the following expansion of the
4d-operator can be obtained:

- m
A”’(ak)=<z (—U"’”’( )ak+p>' (5)
p=0 P
The product of two sequences (a,) and (b,) is defined as

(a) - (by)=(acby).

The discrete Fourier transform operator &, working on a sequence of
length n, and its inverse are defined as follows:

1 "t .
'g;(ak) = (____ Z aje(Znt/n)]k),
NOF=

1 2! o
g‘;—l(ak) — <____ Z aje(Zn:/n)]k>.
Jn %

1t is easy to prove that for any sequence (a,) one has F ~'F(a,) = (ax).
The only ingredient is the summation formula for geometric sequences. The
operator # has some remarkable and extremely useful properties. If we
define the (squared) norm of a sequence (a,) to be the number

n—1

(@)l =3 lael®
k=0

then the Plancherel-Parseval theorem tells us that || # (a,)||° = |(a,)]|%; the
Fourier transform does not change the norm of a sequence. This is very
useful: if we want to know how an operator changes the norm of a
sequence, we can just as well look at how the sequence’s norm changes in
Fourier space, which sometimes is a great deal easier, as the following
formula shows.

FA(a,)= (" —1) F(ay) (6)
or, equivalently,

Alay)=F (e — 1) - F(a,)).
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Proof. FAay) = (1/y/m) ¥72] — a) eIy = ((1/y/n)
o (PR -1 ae“z’“/"“") = (e‘z’"/"”‘ 1} - #(a,). So in Fourier
space, the linear operator 4 is a diagonal operator: components of the
Fourier transformed sequence do not mix under 4. By applying Eq. (6) a
number of times, we obtain

FA%a,)=((e*"k—1))- F(a,).

The squared modulus of €™/ —1)(e~ @/ _1})=2—2 cos(2nj/n).
This, together with the above equality and the Plancherel-Parseval
theorem gives

n—1 2
(44a)17='3, (2-2¢0s ——~) F (@, ™)
j=0
where % (a,); means the jth component of the Fourier transform of (a,).

The subject of finite Fourier transforms is treated in more detail in [7],
starting at paragraph 4.4.

3. PROOFS OF THE INEQUALITIES

Now we have defined enough to write the lemma, on which the proofs
of Eqgs. (1)-(4) depend.

LEMMA 1. Let a sequence (a,)e C" of length n be given, and let de N be
greater than zero. Then the following free statements hold:

(@) If Y7 sac=0, then

14%a0)]? > (2 2cos—) @l

with equality if and only if (a;)=a(e® %)+ f(e """k} for constants
o, peC.

(b) If n is even, then
14%@a))* <4 (al?,
with equality if and only if (a,) = a((—1)*) for some constant xe C.

(c) If nis odd, then

d
||A"(ak)n2<(2+2cos§) Han)l?
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with equality if and only if (a;) = a(e@™ /M +1VDky 4 g(eRriimitn=1y21ky for
constants «, f e C.
(d) Ifniseven, and ;21 (—1) a, =0, then

2m\?
8@l < 2+ 200827 lap)l,

with equality if and only if (a,)=a(e@/mU2+Dky 4 Berimin2=Dky for
constants a, f e C.

(e) If n is even, and Y;_} e mkq, =0 for m=1in, tn—1, and
in+1, then

4m\*
144a0)1< (2 + 2005 Hai?

with equality if and only if (a,)=a(e@™/mMW2+2k) 4 B(Erimn2=2ky for
constants o, fe C.

As is said above, (a—c) are proved in Schoenberg [5]. An elegant geometri-
cal proof of (a) can also be found in Shisha [6].

Proof. (a) 1If ||(a,)||* is held constant (which is the same as keeping
Y5 |#(a);]? constant), the sum on the right of Eq. (7) is a minimum
when all the “mass” is put in the Fourier component or components with
the least factor associated to it. This factor, (2 — 2 cos(2mj/n))? is zero
when j=0, but by assumption the corresponding component F(a,),=
S #_tay is also zero, so no mass can be put there. The minimum is there-
fore attained if and only if all mass is distributed over #(a,), and
F(a;)a_,, which means that (a,) should be a complex linear combination
of (e®™™*)y and (e */"%), and then | 4(a,))?=2(1 —cos(2n/n)) ||(a,)|>
This proves the first part.

(b) From here, the inequalities are the reverse of the one in (a), so
we seek for the maximum among the factors 2(1 — cos(2nj/n)), but for the
rest the proofs are completely analogous to the one above. Since n is even,
the maximum among the factors (2 — 2 cos(2nj/n))? is 47 attained when
Jj=1in, and the corresponding sequence is (( —1)*). Therefore equality holds
if and only if the sequence is of the form (¢( —1)*) for some constant ce C.

(c) Now nis odd, so (2 — 2 cos(2nj/n))” attains its maximum when j =
I(n+1)orj=i(n—1), where it reaches the value (2 — 2 cos(2r - §(n + 1)/n))?=
(2 + 2 cos(n/n))”. So the inequality is proved, and the sequences for which
equality holds are the complex linear combinations of e!?"/m(n+1¥2ky and
(eriimitn— 120Ky,

(d) Here n is again even, but since it now is given that

o (—1)*a,=0, that is, #(ay),,» =0, the sequence that resulted in part
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(b) is no longer allowed. The maximum of the (2 —2cos(2nj/n))?’s, given
that j=n/2 is forbidden, is now attained when j=n/2+1, whereby the
inequality is proved. The extremising sequences are those that are linear
combinations of (e!?™/mn2+Dky and (e2m/min2—1k),

{e) This is almost the same as case (d), with the difference that not
only the (n/2yth Fourier component should be zero, but also the
j=(n/2+1)th. This leads to the required inequality and extremising
sequences. This proves the lemma.

The reason that the five on first sight rather haphazardly chosen
inequalities above have been proved is that some of them are needed for
the proof of the inequalities (1)-(4), which I give in a moment. (The others
were too beautiful to leave behind!)

The inequalities proven above cannot be applied directly to prove
Egs. (1}-(4). The problem is that the boundary conditions, for instance,
that the first and the last of the numbers is zero or that the numbers are
real, have to be incorporated in some way. The outcome depends in an
essential way on these boundary conditions. For example, if in (1) it were
not demanded that the first and last number be zero, the result would be
that the minimum sequence is the constant sequence, because for each
constant sequence one has A(a,) = (0).

The proofs below all (but one) have the same structure. Given a real
sequence b,, ..., b, € R” with boundary conditions, this sequence is inbedded
in C™ as a complex (periodic}) sequence (a,), with m > n. This inbedding is
chosen in such a way that ||(a,))? is an integral number times ¥, |4,/ and
also that ||4(a,)|? is an integer times ¥, |b,~b,_,|>. Then some part of
Lemma 1 is applied (with d=1, since we are dealing with first differences
only for the moment). This gives a linear minimum-sequence-space (or
maximum-, of course) of dimension one or two, i.e., linear combinations of
one or two sequences, that minimize (or maximize) ||4(a,)|* divided by
I(a,)ll>. We then check that this space contains a subspace that contains
some inbedded real requence of the form we started with. The correspond-
ing real sequences b, ..., b, therefore minimize ¥, |b;—b,_,|* (under fixed
¥ .16:1%), because these sums only differ by a factor to the norms of the
corresponding complex sequences.

Proof of Egs. (1)-(4). (1) Inbed the sequence of real numbers b; in
C**? by associating with the numbers b, the sequence (a,)=
(bo, by, s by, —bo,—by, .., —b,). It is obvious that T "t 1q, =0, so
Lemma 1(a) applies and yields

2n

lA(ag)]?>2 (1 _ cos m) N2 =2 (1 —cos

T
n+1

) Nl
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Now (a2 =235_, 1b¢l? and [4(a)|> =2 2], bx—b,_,I% the last
equality holding because a,=a, . ,. So the above inequality directly gives
the desired result if we can show that among the sequences that minimize
the left-hand side there are some that can be obtained by inbedding a real
sequence b, in C2"*2 First of all, the result of inbedding a real requence is
obviously real. The minimizing sequences are of the form a(e?"/(27+20k) 4
B(e~ 3/Cn+20ky. the real sequences among these are exactly those of the
form asin{(n/(n+ 1))k +v), with «, ye R, Inbedded sequences also have
their zeroth coefficient zero, so y must be zero. This sequence can be
obtained by inbedding the real number sequence b,=a sin(kn/(n+ 1)),
which proves Eq. (1).

(2) Equation (2) follows from the first, and does not use Lemma 1
directly. Inbed the given sequence in a real-number sequence (c;), whose
components are given by (¢;)=(bo=0,b, 0, by_1, b, 0, b4_ 1, .., by,
bo=0)eR>. It is clear that 3" |ck| =23"%_,|bil* and also that
Zi"H lex—cx—al? =23k 1be—bi_ iI* because lc,—¢,-11>=0. The
sequence satisfies the condition that ¢y=c,,,; =0, so Eq. (1) applies and

yields
DK

with equality if ¢, = a sin(kn/(2n + 1)). For these numbers it is true that
Ch_k=Cni1+x> S0 this is indeed an inbedded sequence. This proves
Eq. (2).

(3) Real numbers b, .., b, are given, and b,=>5, . =0. Inbed this
sequence in (a,) = (bg, b1y bpy (— 1) g, (—1)" by, .y, (=1)"b,)eC? 2
Now Y7 ' (—1)*a,=0, so Lemma 1(d) applies and states that

2n+1
Y (cr—cy)? >2<1—cos

k=1

2n
2 2
I4(a?<2 (14608 2 ) a1,

with equality if and only if (a,) = a(e@Vr+2N@n+2y2+1ky 4
B(ePrifen+N2n+2)2-1)ky For a sequence of this form to be the result of
an inbedding, it should be at least real and a, should be zero; therefore
(a,)= (a(—1)*sin((=n/(r—1))k)), and it is easily checked that this is an
inbedded sequence. This proves (3).

(4) Given are real numbers 4, .., b, and b, =0. Inbed this sequence
in the sequence (a,) in the following way:

(ak)=(b0,b1,...,b,,,b,,,b,,,l,...,bl,—~b0,-b1,...,
b, —b,,—b,_y, n—b)eCin*2

n ns n—1s
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First, note that |[(a.)> =4 X%_, |bel3 and that [4(a,)|* =
4% % _ |be—bi_,|% the last equality holding because a,=a,,; and
Ay, 1= —bo=bg. It is clear that 33" *' (—1)* a, =0: the first quarter of
the sequence vanishes against the second, and the third against the
fourth. Furthermore, Y "% (—1)* et (47+20kg = because, since

Qr= —Qk2n41>

k % (2nif(dn + 2))k K+ 2041 oot (nif(dn+ 2))(k + 2n + 1
a(—1)"e + i 2000(—1) e

=ak(__1)k e;t(Zm‘/(4n+2))k+ak+2"+l(__1)k ;t(27u/(4n+2i)k__0

so the sum of all those pairs is also zero. Thus part (e) of the lemma may
be applied. It yields

IIA(ak)l|2<2(1+COS )Il(ak)IIZ,

4n
4n+?2
with equality if and only if (a,)=a(e!> 7@ +2N@n+22+2ky 4

Bleri/tan+2)@n+2)2-2)k) - Al} real sequences with zeroth coefficient zero
among these are of the form

2kn
= —1)*sin ———
(00) = (a1 sin 222,
{with a real) which can easily be checked to be an inbedded sequence. This
proves Eq. (4).
The case of second differences is similar to that of first differences. The

following result answers the question raised by Alzer in [3].

THEOREM. Let n real numbers b, ..., b, be given, and let by=»b,,,=0.
Then the following inequalities hold.

n n—1
<ZSin2( +1)> g kzo(bk'_Zbk+l+bk+2)2
) Z b2,

The left inequality is attained if and only if b, = a sin(kn/(n+ 1)) for some
w€ R, and the right one is attained if and only if b, = a{ — 1) sin(kn/(n + 1))
for some x€eR.

(2 +2 cos

The left inequality was already proved by Fan et al. in [1].

Proof. Inbed the sequence of numbers b,, .., b, in the complex-valued
periodic sequence (a,)eC?"*? by defining (a,)=(0,b,, ... 5,_1,b,,
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0,~b,,—b, ,...—b). If we write §,=b,~—2b,,,+b,,, for k=0, ..,
n—1, then, since by=5,,,=0, 4%(a,)=(5gy w0, 6,_1,0,—8,_ 1, .., =64, 0),
so that |4*(a)I> =237 24 0:, and it is obvious that ||(a)I*=23;_, bi.
Therefore, we should minimize and maximize the norm (4%*(a, )|l relative to
[[(a,)| among the sequences (a,) of the above form.

The sequences (a,) constructed above always obey the condition
Yan+la, =0, so we can apply part (a) of Lemma 1 (with “n” =2n+2),

2
) @l

with equality if and only if (a,)=a(e@ /(2 +2)ky 4 (e~ @ri/2n+20ky for
constants «, feC. Among these sequences, only those equal to
(asin(kn/(n+1))) for some aeR are of the required form. And because
2—2cos(2r/(2n + 2)) = 4 sin*(n/2(n + 1)), this proves the left inequality.

The sequence (a;) also obeys >7*'(—1)*a,=0, so part (d) of
Lemma 1 is applicable, and this time yields

2n
2 25 (9 _
O

2n
14 <2+ 205 2255 el

with equality if and only if (a,) = a(e? 7@ +20(@n+22+Dky

Ble?rian+ 220+ 2)/2 = ky for constants a«, f € C. The real-valued first-coef-
ficient-zero sequences among these are precisely those with (a,)=
(a{ = 1)* sin(kn/(n + 1))) for some xR, and these sequences are indeed of
the required form. This proves the right inequality, and thereby the
theorem.

If the requirement that b, , ; be zero is lifted and no other is imposed, no
sensible generalisation of the theorem is obtained. The linear sequence
b, = ak for instance can have a norm as high as you wish and still have
zero second difference.

A different way of generalising the above double inequality is to ask
whether a similar inequality exists for third differences. That is, what are
the best possible constants 4 and B such that

||M=

i< Z —3by +3b, - b 3)’<SB Y b

k=1 k=1

for all real numbers 0=b,, b,, .., b,, b, , =07 The constant A is zero,
because the third difference of b, =k(n+1—k) is identically zero. The
value of B for different n is unknown. The method used in this paper for
proving the double inequality for second differences cannot be used to find
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the constant in this case: it depends on an appropriate inbedding in a
sequence space without boundary conditions. That such an inbedding does
not exist anymore in this case is very probable if you look at the form of
the minimizing sequence for the left inequality: instead of a sine, it is a
polynomial.

Finally, it is an interesting, open question whether an elementary proof
exists of the double inequality in the theorem above, similar to the proofs
of (1)-(4)in [3] and [4].

4, EIGENVALUES AND EIGENVECTORS OF ROTATION-INVARIANT MATRICES

Let us now turn to the complex-valued periodic sequences. Suppose m
complex constants S, ..., B8,,_, are given, (m < n), and one is to tell how to
choose the sequence (a,)e C" so that the norm of the sequence A(a,) is
minimal, or maximal, with respect to |(a.)|l, where the linear rotation-
invariant operator A is defined by

m—1
A(ak)=( 5 ﬁ,—akﬂ).
j=0

{The operator A is called rotation-invariant because it commutes with
rotations, or shifts.) This problem is easily solved by using discrete Fourier
transformations.
First, find constants y,, ..., ¥,,_ | so that
m—1 m—1
('S Bare,)= T 1.4%a)
p=0 g=0

Using Eq. (5), and equating all the terms with equal displacement p, this
is equivalent to the condition

m—1
b I ()

This is a system of m linear equations in m unknowns. To find the solution,
what is needed is the inverse of the matrix

(o)),

where the indices p, ¢ run through O, ..., n—1 (instead of the more usual
range 1, ..., n). For example, when n =4, what is needed is the inverse of the
matrix

409:/185/2-17
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1 -1 1 -1
0 1 -2 3
0 0 1 -=3p
0O 0 0 1
which in this case is

1 1 1 1

01 2 3

0 01 3

0 0 0 1

The inverse of the general n by n matrix is, as might be expected from the
above example, the same matrix except that all elements are positive.

() (G

where the indices p, g run through 0, ..., n — 1.

LEMMA 2.

For the proof of this lemma I refer to the final paragraph. Because the
f’s are given, the y’s can now be calculated by letting the above matrix
operate on the vector of the f’s. We thus obtain the representation of the
operator A4 in terms of powers of 4. By Eq. (6) and the linearity of # and
A4, we have

FAla)=F (mi m“) (@)

= (mzl 7 ale!mimk 1)") - F(ag) = (P _ 1)) F(a,),
d=0

where P is the polynomial P(x)=7v,+7,x+ <+ +y,,_,x™ " '. This means
that

lA(@l? = 1P ~ 1)) - Fap)>

To minimize or maximize the left-hand-size, j should be chosen so that
|P(e?™/™J —1)|? is minimal, respectively maximal, and (a,) must then be
set equal to (xe'*™™*) Tt can happen that there are several values of j that
make |P(e"/™J — 1)|? minimal or maximal. In that case the minimizing or
maximizing sequences form a linear space, with dimension equal to the
number of values of j found.



FAN-TAUSSKY—TODD INEQUALITIES 475

The sequences (e'*™™*) j=0,..,n—1, are “eigensequences” of the
operator 4: if 4 operates on the sequence it does not change except that
it is multiplied with some factor (see Eq. (6) and note that the Fourier
transform of (e‘>*¥/"*) is the sequence that is zero everywhere except at the
jth place). If the complex-valued periodic sequences are identified with
vectors in C", and the linear rotation-invariant operator 4 with a matrix
A=(ay)eC"*", then the above discussion is a proof of the following
theorem.

THEOREM. Let A=(a;)eC"*" be a rotation-invariant matrix, that is,
a; =4y, 1y, +1) for every i and j, where the indices are counted modulo n.
Then the eigenvectors of the matrix are

e;= (1, erumin=n . j=0, ,n—1,

“t”

(where the denotes transposition) and the eigenvalues corresponding to
these eigenvectors are the elements of the vector

(¥ = 1)), ((;)) (@00, dots s dogn - 1))"

The theorem can also be proved directly by writing out the matrix
product:

(eZNip/n _ 1)q (") = ((e2m'p/n _ 1) + l)r = eZHiprg’n’
q=0 9
so the product of the two matrices is exactly the matrix of eigenvectors of
A. Applying it to the transposed first row of A therefore yields the vector
of eigenvalues multiplied with the first component of each eigenvector,
which are all 1.

S. PROOF OF LEMMA 2

The following is to be proved.

£ e ()
—1)-r =5,
,‘;o( ) (p i

where the Kronecker symbol 6 is defined by J,,=1 if p=g, and §,,=0
otherwise. The proof runs by induction on ¢. For ¢ =0, the equality is
simple: if p=0 the only nonzero term is the j=0 term which equals one,
and if p > 1 all terms are zero. So now suppose the equality is true for some
g<n—1 and all p. Then
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e ()
-5 GNG)-0)
- ()G)
A (VK G (5

By the induction hypothesis, the first term is just 4,,. Since g <n—1,
(%)=1(,%,)=0 so that in the second term the range of the summation can
be changed from Q, .., n— 1 into 1, ..., n. Substituting j by j+ 1, we get

n—1 . n—1 .
TR (AR
wt T (=) yo )T e ¢

z‘qu“\"spfl,q—‘qu:‘spf 1-q=5p-q+l’

where the induction hypothesis was used twice. This proves the lemma.
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