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We present a new probabilistic model of sequence evolution, allowing indels of arbitrary length, and give sequence
alignment algorithms for our model. Previously implemented evolutionary models have allowed (at most) single-residue
indels or have introduced artifacts such as the existence of indivisible ‘‘fragments.’’ We compare our algorithm to these
previous methods by applying it to the structural homology dataset HOMSTRAD, evaluating the accuracy of (1)
alignments and (2) evolutionary time estimates. With our method, it is possible (for the first time) to integrate
probabilistic sequence alignment, with reliability indicators and arbitrary gap penalties, in the same framework as
phylogenetic reconstruction. Our alignment algorithm requires that we evaluate the likelihood of any specific path of
mutation events in a continuous-time Markov model, with the event times integrated out. To this effect, we introduce
a ‘‘trajectory likelihood’’ algorithm (Appendix A). We anticipate that this algorithm will be useful in more general
contexts, such as Markov Chain Monte Carlo simulations.

Introduction

Stochastic models of amino acid and nucleotide
substitution are fundamental to many applications in
bioinformatics, including database searching, pairwise
sequence alignment, evolutionary tree construction, do-
main profiling, and (most recently) ‘‘phylogenetic foot-
printing’’ (Durbin et al. 1998). Yet, despite extensive
progress in researching such point substitution models, the
evolutionary treatment of insertion and deletion events
(indels) has lagged behind (Thorne et al. 1991; Hein et al.
2000; Hein 2001; Holmes and Bruno 2001; Miklós &
Toroczkai 2001; Metzler et al. 2001; Lunter et al. 2003;
Metzler 2003). A measure of this lag is that all indel models
so far analyzed assume either that each deletion event
affects only a single residue or that the sequence is
comprised of independently evolving fragments. Both
these assumptions are clearly unrealistic and may cause
systematic bias (Hein et al. 2000; Holmes and Bruno 2001).

To date, the canonical model for biological sequence
evolution with indels has been the TKF91 model (Thorne
et al. 1991). This model describes the evolution of a finite
sequence and allows only single-residue indel events.
TKF91 alignment therefore uses a global scoring scheme
with a linear penalty function for gap sizes. The TKF91
model has been extensively analyzed (Hein et al. 2000)
and developed into a multiple alignment algorithm, both
in full likelihood (Hein 2001; Lunter et al. 2003) and
Markov Chain Monte Carlo (MCMC) settings (Holmes
and Bruno 2001).

In contrast to TKF91 alignment, many computational
biologists use a local scheme with affine gap penalties. In
evolutionary terms, affine gap costs correspond roughly to
a geometric length distribution for each single indel event.
Previously, the closest evolutionary equivalent to this has
been the TKF92 model. In this model, the sequence is
assumed to consist of finite-length indivisible fragments,
and the indel process acts on fragments rather than

residues. This introduces hidden information in the form of
fragment boundaries whose locations must be inferred.
The realism of these invisible boundaries is questionable,
and they may potentially bias multiple alignment (Thorne
et al. 1992).

When indels affect single residues only, the fate of
each residue in a given sequence is independent: we can
chop a pairwise alignment into independently evolving
zones by making a cut before every ancestral residue
(Thorne et al. 1991). Modeling alignments with long
insertion events but single-residue deletions is tractable (if
mathematically complex) because each ancestral residue
still corresponds to an independent zone (Miklós and
Toroczkai 2001). However, finding exact probabilities for
alignments with long deletion events is difficult: for any
two ancestral residues, there is a finite probability that they
will be deleted in a single event, so the alignment cannot be
split into independent zones by cutting after each ancestral
residue.

Later in this paper (see Models), we present a new long
indel model as an alternative to the TKF91 model,
introducing a new notation for evolutionary models that
we call the rate grammar. We then show (see Algorithm)
that, in an idealized model where the evolving sequence is
assumed to be part of an infinitely long sequence, the
pairwise alignment can still be split into independent zones;
not after every ancestral residue, but after every surviving
ancestral residue; that is, every column in the alignment that
does not contain a gap. Because no deletion event can cross
such a boundary, the zones are independent. The
probability of observing a zone can be estimated, not
analytically (as with the TKF91 and TKF92 models), but by
directly summing the probability of short mutation
trajectories such as that shown in Figure 1. We have
implemented our model and compared its performance to
the TKF91, TKF92, and Gotoh algorithms (Gotoh 1982),
using for a benchmark the structurally informed alignments
from the HOMSTRAD database (Mizuguchi et al. 1998), as
described in the section titled Evaluation. Our results, given
in Results, show that the long indel model outperforms
TKF91 and TKF92 both at alignment and evolutionary
distance estimation, and its performance is comparable with
that of Gotoh, while providing much more information
about sequence comparison (confidence levels). In the
Discussion we present applications of our theory.
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As mentioned above, our alignment algorithm di-
rectly enumerates finite-length ‘‘trajectories,’’ such as the
one shown in figure 1. A trajectory is here defined to be the
set of all mutation histories with a given sequence of
mutation events; that is, the actual timing of each
individual mutation event is integrated out of the trajectory
likelihood. As models of molecular sequence evolution
become increasingly complex, and the chances of obtain-
ing closed-form solutions to these models become
correspondingly slim, we anticipate that such trajectory-
counting approaches as we have used (based either on
direct enumeration, MCMC sampling, or some other
method) will become increasingly necessary. Accordingly,
in Appendix A, we present a complete algorithm for
computing trajectory likelihoods.

Models

Let � be a finite alphabet, let �L be the set of all
sequences over � of length L, and let �* ¼ [‘L¼0�L be
the set of sequences of any length. For sequences S,
T 2 �*, let jSj denote the sequence length, ST the
concatenation of S and T, and Sn the nth symbol, for 1 �
n � jSj.

SID Models

The evolutionary models we consider are continuous-
time Markov processes whose state space � is the set of all
sequences, � ¼ �*. We consider in particular a class of
models called substitution/insertion/deletion (SID) models.
These models allow local mutations only, including point
substitutions and multi-residue indels. The rates of substi-
tution, insertion, and deletion events are given, respec-
tively, by qS(S

L,SX,SY,SR), qI(S
L,SI,SR), and qD(S

L,SD,SR),
where SX, SY are the incoming and outgoing sub-
stitution sequences (each of length 1), SI,SD are the
inserted or deleted sequences, and SL,SR are the sequences
flanking the mutation.

Thus, the instantaneous rate R(S,S9) with which
sequence S mutates to sequence S9 is given by

RðS; S9Þ ¼
X

SL ;SR ;jSX j¼1;
jSY j¼1;SX 6¼SY

qsðSL; SX; SY ; SRÞ

3 dðS ¼ SLSXSRÞdðS9 ¼ SLSYSRÞ
þ

X
sL ;SR;jSI j.0

qIðSL; SI; SRÞ

3 dðS ¼ SLSRÞdðS9 ¼ SLSISRÞ
þ

X
SL ;SR;jSDj.0

qDðSL; SD; SRÞ

3 dðS ¼ SLSDSRÞdðS9 ¼ SLSRÞ; ð1Þ
for S 6¼ S9. Here d(S¼S9) is 1 if S¼S9 and 0 if S 6¼ S. Note
that we sum over all applicable mutations; thus, the total
rate of mutating sequence CAAG to sequence CAG is
R(CAAG,CAG) ¼ qD(C,A,AG) þ qD(CA,A,G), because
there are two indistinguishable A’s that can be deleted.

A more readable notation for this model is

SLSXSR �������!qSðSL;SX ;SY ;SRÞ
SLSYSR jSXj ¼ 1

jSYj ¼ 1;

SX 6¼ SY; ð2Þ

SLSR �������!qIðSL ;SI ;SRÞ
SLSISR jSIj. 0; ð3Þ

SLSDSR �������!qDðSL ;SD;SRÞ
SLSR jSDj. 0: ð4Þ

We call this notation a rate grammar, because it is
similar to a stochastic grammar (Durbin et al. 1998); indeed,
the only differences are (1) that it has continuous-time evo-
lutionary rates associated with every rule, rather than dis-
crete-time transformation probabilities; and (2) in contrast to
a stochastic grammar, there are no ‘‘terminal’’ symbols;
rather, every residue is a ‘‘nonterminal,’’ because evolution
is a nonterminating process. Using rate grammars, it is
possible to formally describe a wide variety of evolutionary
processes (including duplication, inversion, and transloca-
tion) as well as quite general MCMC algorithms for
sampling trajectories through the state space of suchmodels.

Returning to straightforward SID models, if qS,
qI, and qD are independent of SL and SR (i.e., qS [
qS(S

X,SY), qI [ qI(S
I), and qD [ qD(S

D)) then we say that
the SID model is context-independent. Note, however, that
a context-independent rate grammar does not have quite
the same meaning as a context-free grammar in the
Chomsky sense, because a context-free grammar would
not allow multi-residue deletions, but a context-indepen-
dent rate grammar allows such deletions as long as they
occur at a rate independent of the flanking sequence.

TKF91

The TKF91 model (Thorne et al. 1991) is a reversible
context-independent SID model (see above) with the
following indel rates:

qIðSÞ ¼ kqðS1Þ if jSj ¼ 1; 0 otherwise: ð5Þ
qDðSÞ ¼ l if jSj ¼ 1; 0 otherwise: ð6Þ

Here q(x) is the equilibrium residue distribution, while k
and l are constant insertion and deletion rates, with k , l.

FIG. 1.—An example three-event trajectory for a zone that changes
length from four resides to three (outcome Bi

3:2; see section titled
Algorithm). By definition, the final ancestral residue in the zone (the M)
cannot be deleted, whereas every other ancestral residue (the A’s) must be
deleted.
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Let t(n) be the equilibrium length distribution. For
reversibility, detailed balance requires that kt(n)¼ lt(nþ
1) and so t(n) ¼ cn(1 � c) where c ¼ k/l. That is, the
equilibrium length distribution is geometric with parameter
c and mean c/(1 � c). The full sequence equilibrium
distribution takes the form pðSÞ ¼ tðjSjÞ

QjSj
k¼1 qðSkÞ.

Because the TKF91 model does not allow multiple
residues to be deleted instantaneously, the fates of any two
ancestral residues are independent. This permits an exact
solution of the transition probabilities by dynamic pro-
gramming (Thorne et al. 1991).

TKF92

The TKF92 model is a variation of the TKF91 model
(Thorne et al. 1992). In TKF92, the sequence consists of
fixed-length indivisible fragments, each fragment contain-
ing a geometrically distributed number of residues. This is
equivalent to replacing the finite alphabet of residues, �,
with an infinite alphabet of sequence fragments, �*, so
that the state space of the model is now � ¼ (�*)*—i.e.,
the set of sequences of sequences. The fragment substitu-
tion matrix qS is set up to allow only point substitutions
within each fragment.

A TKF92 evolutionary state is not a sequence of
residues, but rather a sequence of sequences; the observed,
‘‘biological’’ sequence is recovered by concatenating all
the fragments, using the map f(S) ¼ S1S2 � � � SjSj. Frag-
ments are not observed, and alignment probabilities, as
well as the maximally contributing alignment, are obtained
by summing out all possible fragmentations of the
observed sequences. (We use the standard Viterbi
algorithm for finding the maximally contributing align-
ment, and the summation over fragmentations is done
implicitly by a careful design of the TKF92 HMM.) The
advantage of TKF92 is that it allows the simultaneous
deletion of multiple residues (in the same fragment) while
retaining transition probabilities that can be calculated
exactly, as per TKF91 (Thorne et al. 1992). However, this
comes at the expense of introducing hidden information
that may bias alignment.

Long Indel Model

We return now to models with state space � ¼ �*,
where the evolutionary state is a sequence (rather than
a sequence of sequences, as in TKF92).

The long indel model is a time-reversible, context-
independent SID model, as described earlier. It generalizes
TKF91 by allowing instantaneous deletion of arbitrarily
long subsequences, without requiring that these subse-
quences form an indivisible fragment.

The long indel model has the following rates:

qIðSÞ ¼ kjSj
YjSj
k¼1

qðSkÞ; ð7Þ

qDðSÞ ¼ ljSj; ð8Þ
where kk,lk are the rates of k-residue insertions and
deletions, and q and qS are as defined as in the earlier
description of TKF91.

Again, let t(n) be the equilibrium length distribution.
Time reversibility implies detailed balance, which requires
that kkt(n)¼ lkt(nþ k) for all n and k, implying both that
t(n)¼ cn(1� c) and that kk/lk¼ ck, where c¼ k1/l1. That
is, not only is the equilibrium length distribution geometric
with parameter c, but so is the ratio kk/lk as a function of
k. Again, pðSÞ ¼ tðjSjÞ

QjSj
k¼1 qðSkÞ.

Note that we have full freedom in choosing the
deletion rate function (which then fixes the insertion rates).
For simplicity, however, we choose the rate for k-residue
deletions to be a geometric function of k with parameter r,
so lk¼l(1� r)2rk�1 and kk¼cl(1� r)2(cr)k�1. The reason
for the normalization factor (1 � r)2 is that it makes the
total deletion rate per site come out as

P‘
k¼1 klk ¼ l, so

that l has the same meaning as in the TKF91 and TKF92
models, where l ¼

P‘
k¼1 klk is the total deletion rate per

site. It can be seen that TKF91 emerges as a special case of
the geometric long indel model when r ¼ 0.

In sequence alignment terms, with this choice of indel
rates our model is the evolutionary analog of Gotoh’s
affine gap algorithm (Gotoh 1982). Note, however, that,
although the size of indel events is geometrically dis-
tributed, the size of gaps in an alignment will only be
geometrically distributed when the two sequences are suf-
ficiently close so that there is only one expected indel
event per observed gap.

In the above treatment, we have adopted a reversible
model purely for technical convenience. Compared to
irreversible models, reversible models have roughly half as
many parameters; furthermore, they permit the use of an
unrooted phylogenetic tree, which for us means that we can
treat one sequence as the ancestor and the other as
descendant with no influence on the outcomes (Durbin
et al. 1998).

Although reversibility is a common assumption in
molecular evolutionary analyses, we believe that it must be
treated with skepticism. Although there is anecdotal
evidence that nucleotide substitution processes are often
close to reversible (Bruno and Arvestad 1997), there is no
reason why this should, in general, be the case. There are
many ways in which a realistic indel model could violate
detailed balance: for example, insertion events might typi-
cally be small and frequent, and deletion events might be
rare and large (Holmes and Durbin 1998). Similarly
plausible irreversibilities can be conjectured for substitu-
tion models, particularly if the substitution rate depends on
the sequence context, as, e.g., in CPG depression.

Infinite Sequence

Although the long indel model has some convenient
theoretical properties, it also has some that are decidedly
inconvenient. For example, consider all deletion events on
sequence S that start at residue n; in other words, deletions
of the form SLSDSR ! SLSR where jSLj ¼ n� 1. Call such
an event a rightward deletion of residue n. The total rate of
all rightward deletions of residue n is

PjSjþ1�n
k¼1 lk . Clearly

this is dependent on n: the total rightward deletion rate is
lower when n is near the right-hand end of the sequence,
so that the probability that the residue escapes rightward
deletion after time t depends on the history of the flanking
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sequence. This is bad news for dynamic programing
alignment methods, which require conditional indepen-
dence between different parts of the alignment.

It would be convenient to have a rightward deletion
rate that is independent of the position along the sequence.
This condition is satisfied in infinite sequences, in which
the rightward deletion rate of any residue according to the
long indel model is a constant,

P‘
k¼1 lk ¼ ð1� rÞl. One

way to achieve a position-independent rightward deletion
rate is therefore to consider the sequence S as being
embedded in an infinite sequence, I¼ LSR, where L, R 2
�‘. Here L and R are infinite flanking sequences that we
do not observe.

Embedding S in an infinite sequence I has con-
sequences for indels at the ends of S. Consider, for
example, a deletion event in I.

ILIDIR ! ILIR; ð9Þ
where the deleted subsequence ID overlaps both S and the
flanking sequence L (fig. 2). From the point of view of the
embedded sequence S, this is equivalent to the event

SDSR ! SR; ð10Þ
i.e., a deletion of the jSDj leftmost residues of S. Many
deletions in I correspond to this deletion event in S. Thus,
there is an effectively increased rate of deletions at both
ends of S.

The form of the deletion rate qD(S
L,SR,SD) that is

effectively experienced by sequence S must be modified
from equation (8) to take account of these end effects.
If both jSLj . 0 and jSRj . 0, then qD ¼ ljSDj (as before);
if jSLj¼ 0 or jSRj ¼ 0 (but not both), then qD ¼

P‘
k¼jSDj lk;

whereas if both jSLj ¼ jSRj ¼ 0, then qD ¼P‘
j¼0
P‘

k¼jSDjþj lk. Substituting in the geometric dele-
tion rate lk¼ l(1� r)2rk�1, we have

qDðSL; SD; SRÞ

¼
lð1� rÞ2rjSDj�1 if jSLj.0; jSRj.0;

lð1� rÞrjSDj�1 if one of jSLj; jSRj is 0;
lrjS

Dj�1 if jSLj ¼ jSRj ¼ 0.

8><
>: ð11Þ

To keep the model reversible, we set

qIðSL; SI; SRÞ ¼ qDðSL; SI; SRÞc�jSI j
YjSI j

k¼1
qðSI

kÞ: ð12Þ

Thus the effective insertion rate at the ends of S is also
increased relative to the rate inside S. An interpretation of
this is that, with a certain rate, the boundaries of S are
extended into the infinite flanking sequence. This effect,

which balances deletions extending into the flanking
sequence, is responsible for the apparent extra ‘‘insertions’’
at the ends.

Algorithm

Like the dynamic programming (DP) algorithms for
the TKF models, the DP for the long indel model makes use
of independence between different parts of the alignment,
allowing us to ‘‘chop’’ the alignment into independent
zones after every aligned ancestor-descendant residue pair.
The justification for this runs as follows. Because of the
embedding in an infinite sequence (see above), the total
rightward deletion rate for residue n is independent of n or
jSj. Independence of jSj implies that the survival probabil-
ity of residue n does not depend on indel events that start to
the right of n. Moreover, the existence of an aligned residue
pair somewhere left of n implies that no deletion events
crossed that point in the sequence, so that the survival
probability is also conditionally independent on the events
left of that point. Therefore, if we chop an alignment after
each aligned pair, the probability of the alignment
simplifies to a product of conditionally independent
probabilities for each chopped zone.

Let us consider the following alignment:

� � �
A A G

-- -- C

T -- A T

-- G -- T

����
���� -- -- -- G

G C G G

T

T

����
����A C C G

-- -- -- --
� � �

Here � � � denote the (unobserved) infinite flanking sequen-
ces, and we have indicated the places at which the
alignment is chopped using vertical bars (j). Because of
dependencies caused by overlapping indels, we cannot do
dynamic programing algorithm inside a chop zone; we can
only calculate the likelihood of whole chop zones. Within
a chop zone, the sequence ordering of insertions and
deletions is not specified. In other words, we regard the
above alignment as indistinguishable from

� � �
A A G

-- -- C

T A -- T

-- -- G T

����
���� -- -- -- G

G C G G

T

T

����
����A C C G

-- -- -- --
� � �

where the fifth and sixth columns have been swapped,
because these alignments represent the same evolutionary
homology between the residues of the two sequences.

There are four kinds of chop zone, distinguished by
whether they border the left or right flanking sequence,
neither of them, or both. The conditional probabilities of
observing these chop zones are denoted by Lij, Rij, Nij, and
Bij, respectively (see table 1). The indices specify the fate
of nucleotides within the chop zone, namely the deletion of

FIG. 2.—Embedding a sequence S in an infinite sequence I ¼ LSR
increases the effective rate of deletions at the ends of S. Here, a deleted
segment ID partially overlaps the flanking sequences (shown in red) and is
observed as a deletion of SD.

Table 1
Symbolic Representation of the Four Types of Chop Zone
According to Whether They Adjoin the Left and/or Right
Flanking Sequence (� � �) and Notation for Their Probabilities

Lij ¼ P
�
� � � #i � j M

�i # j M

���� Nij ¼ P
�

#i � j M

�i # j M

����
Rij ¼ P

�
#i � j

� � �
�i # j

�
Bij ¼ P

�
� � � #i � j

� � �
�i # j

�
NOTE.—These probabilities are conditional on observing the i (or i þ 1)

ancestral nucleotides. The # signs represent unaligned residues; M pairs represent

aligned residues, and vertical bars represent chop zone boundaries.
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i residues, which are replaced by j newly inserted residues.
Chop zones that do not border the right flanking sequence
(Lij and Nij) furthermore end in a single aligned residue
pair; the others do not.

To calculate alignment likelihoods, we also need the
probability pt(x! y) that residue x mutated to residue y in
time t, found as usual by exponentiating the substitution
rate matrix, and the residue equilibrium probability
distribution q(x). As with the TKF91 model, we separate
the likelihood into a product of independent substitution
and indel probabilities. Thus, conditional on the ancestral
sequence, the probability of our example alignment is the
following product of probabilities:

L2;0 3 ptðG! CÞ
3 N2;1 3 qðGÞptðT! TÞ
3 N0;3 3 qðGÞqðCÞqðGÞptðG! GÞ
3 N0;0 3 ptðT! TÞ
3 R4;0 ð13Þ

The full alignment probability is obtained by multiplying
this by the equilibrium probability of the ancestral
sequence, p(AAGTATGTACCG) (see the section titled
Long Indel Model).

Finite Trajectory Approximation

To calculate alignment likelihoods, we need to
compute probabilities for the four kinds of chop zone
listed in table 1. In each case, this involves enumerating
the different chains of events, or trajectories, that give rise
to the particular outcome, and then calculate the ap-
propriate transition probability for the zone.

Suppose we want to calculate N3,2. If A represents
a deleted ancestral residue, M the conserved ancestral
residue and B an inserted residue, then the zone starts as
the four-residue sequence AAAM and ends as the three-
residue sequence BBM. One valid, three-event trajectory
generating this outcome is shown in figure 1.

Abstractly, a trajectory is viewed as a sequence of
events, and the configuration of the sequence (within the
chop zone) in between events is referred to as the state of
the sequence at that moment. To calculate a trajectory
probability, we need the rate for all events in the trajectory,
as well as the exit rate for each state visited (the exit rate of
a state is defined as the total rate of mutation events for that
state—i.e., the sum of the outgoing transition rates).
Because the required probability is conditional on no
deletion event crossing the left chop zone boundary, this
includes only rightward deletions that originate in the
current chop zone. However, to calculate the exit rate we
must take into account all such deletions, including those
that continue into neighboring chop zones on the right. To
make sure the last residue pair of a chop zone remains
homologous, insertions are assigned to the chop zone of the
residue to the right of the insertion, except at the end of the
sequence, where it is assigned to the last chop zone. Other
insertions (or deletions) are taken not to change the state.

Exact calculation of these probabilities involves
solving some partial differential equations for a generating

function (Miklós and Toroczkai 2001), and it becomes
very complicated, particularly when deletions are in-
volved. Instead of using exact results, we approximated the
chop zone probabilities by bounding the number of indel
events, and the indel lengths per event. This reduces the
infinite sum over all trajectories to a finite sum. We find
empirically that, in the parameter regime of the alignments
we studied, it is sufficient to allow at most three indel
events, and indel lengths of at most 100. (Gaps exceeding
100 residues are extremely rare in the database we used for
testing, accounting for less than 0.1% of all gaps, and the
probability of more than three indel events overlapping,
assuming an indel rate of l¼0.1 and evolutionary distance
3, is less than (1� e�330.1)4 , 0.005 per site.)

Using this finite trajectory approximation, we can
sum the likelihoods of the zone trajectories directly. A
recursive algorithm for computing the likelihood of an
individual trajectory is given in Appendix A.

Dynamic Programming

To compute the joint likelihood of two sequences, we
sum over all chop zone assignments. The following DP
algorithm achieves this. Let Pi

j be the sum of probabilities
of all partial alignments of the first i residues of ancestral
sequence A with the first j residues of descendant sequence
B, where the last characters of the two subsequences are
homologous, and conditional on observing the ancestral
sequence, then

Pi
j ¼ Li�1;j�1ptðAi ! BjÞ

Yj�1
k¼1

qðBkÞ

þ
Xi�2
n¼0

Xj�2
m¼0

Pi�n�1
j�m�1NnmptðAi ! BjÞ

Yj�1
k¼j�m

qðBkÞ; ð14Þ

where the rightmost product is 1 if m¼ 0. The probability
of observing B conditional on A is

ptðB j AÞ ¼ BjAj;jBj
YjBj
k¼1

qðBkÞ

þ
XjAj�1
n¼0

XjBj�1
m¼0

PjAj�n
jBj�mRnm

YjBj
k¼jBj�mþ1

qðBkÞ: ð15Þ

The joint likelihood of the two sequences is Pt(A,B) ¼
Pt(B jA)p(A). These formulas can be simplified somewhat
by taking the equilibrium distribution probabilities outside
the recursion. Let Fi

j ¼ Pi
j/
Qj

k¼1 q(Bk), then

Fi
j ¼

ptðAi ! BjÞ
qðBjÞ

Li�1;j�1 þ
Xi�2
n¼0

Xj�2
m¼0

Fi�n�1
j�m�1Nnm

 !
; ð16Þ

and the joint likelihood Pt(A,B) of observing A and B
becomes

BjAj;jBj þ
XjAj�1
n¼0

XjBj�1
m¼0

F
jAj�n
jBj�m Rnm

 !
pðAÞ

YjBj
k¼1

qðBkÞ; ð17Þ

The time complexity of this recursion is O(jAj2jBj2),
because we need to look back to the start of each sequence
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to calculate each entry. However, it is straightforward to
use corner-cutting methods (Hein et al. 2000), as the
likelihood of big ‘‘unalignable’’ regions is negligible.
Among other approximations, this involves dropping
terms involving Bij, corresponding to completely un-
aligned sequences. With such corner cutting, the running
time can be reduced to O(nm). In practice, the finite-
trajectory approximation of the probability functions takes
roughly the same time as the DP itself, for the event length
cutoff of 3 that we used.

The long indel model can be formulated as a hidden
Markov model (HMM) with three states, Initial, Middle,
and End, and transitions that correspond to the chop zones
(fig. 3). In this formulation, emissions are associated to
transitions [the ‘‘Mealy machine’’ view (Durbin et al.
1998)]. The DP algorithm for computing the joint likeli-
hood is then simply the forward algorithm for HMMs, and
general HMM algorithms for sampling and finding the
most likely path can be used straightforwardly.

Evaluation

To evaluate the various alignment algorithms, we
used the structural alignments from the HOMSTRAD
database as a benchmark (Mizuguchi et al. 1998). We
randomly selected 2

3
of the pairwise alignments as a training

set. The remaining 1
3
served as a test set. Alignment

accuracy was measured by residue-pair overlap; see e.g.,
Holmes and Durbin (1998). Because we compare global
alignment methods, we trimmed the sequences to the
subsequence bounded by the first and last aligned amino
acid pair.

The alignments in the HOMSTRAD database have
sequence similarity ranging from 3% to 99%, with 10%
quantiles at 14% and 83%. For the Gotoh alignment
algorithm, we used the standard BLOSUM62 matrix,
which gave similar but slightly better results than other
BLOSUM matrices. We optimized gap opening and
extension parameters to maximize the Gotoh algorithm’s
accuracy on the training set.

To test the probabilistic models, we needed a sub-
stitution rate matrix. Using the Dayhoff matrix as initial

guess, we obtained maximum likelihood (ML) evolution-
ary distances t for the training set alignments. We then
estimated ML rate matrix by Expectation Maximization
(Holmes and Rubin 2002), normalizing the matrix for one
expected mutation per site at t � 1. This procedure was
iterated until both the evolutionary distances and the rate
matrix converged. The resulting rate matrix was used for
all probabilistic models.

We obtained the deletion rate parameters, l and (for
the TKF92 and long indel model) r by ML estimation on
alignments from the training set, using the time estimates
described above. The insertion rate parameter k was
allowed to vary for each sequence pair to make the
expected sequence length equal the average length of the
two sequences under consideration. We refer to l and r as
the indel rate parameters.

For the test set, we fixed the indel rate parameters and
we performed a ML parameter estimation of the evo-
lutionary distance t for each pair of sequences, summing
over all possible alignments. We then recovered to
maximum likelihood alignment using the Viterbi algo-
rithm (Durbin et al. 1998).

For the long indel model, we also implemented a
program computing the posterior labeling (Durbin et al.
1998) of each aligned column of the Viterbi alignment, that
is, the probability of the aligned column given the data.

Alignment software for the long indel model is
available on request (miklos@stats.ox.ac.uk).

Results

The gap opening and extension parameters that
maximize the accuracy of Gotoh’s algorithm on our train-
ing set are (15, 2), using the BLOSUM62 matrix, giving an
82.2% overlap on the test set. These parameters are higher
than the NCBI-recommended parameters (11, 1); for these
parameters Gotoh’s algorithm performs slightly worse,
with 80.9% overlap.

Maximum likelihood time estimates (MLTEs) of
evolutionary separations for the HOMSTRAD pairwise
alignments, estimated using a point substitution model,
yielded times between 0.014 and 4.23 (in units of expected
substitutions per site) with 10% quantiles at 0.37 and 2.26.
We refer to these estimates as Homstrad MLTEs. We also
calculated time MLTEs for unaligned sequences, using the
various indel models to sum over all alignments, referring
to these individually as TKF91 MLTEs, TKF92 MLTEs,
and Long indel MLTEs, and collectively as model-based
MLTEs. The relationship between Homstrad MLTE and
long percentage identity was approximately linear (data
not shown).

For TKF91, TKF92, and the Long indel model, we
obtained evolutionary parameters l and r by Maximum
Likelihood (table 2). In addition, we endowed the Long
indel model with a mixed geometric distribution for the
indel rates,

lk ¼ l½að1� r1Þ2rk�1
1 þ ð1� aÞð1� r2Þ2rk�1

2 �; ð18Þ

where we estimated a ¼ 0.40, r1 ¼ 0.55, r2 ¼ 0.90 by
counting observed indels in the training set. We then

FIG. 3.—A hidden Markov model formulation of the long indel
model. The emission probabilities (associated to transitions) are not
included. The parameter c ¼ k1/l1 is the parameter governing the
geometric equilibrium length distribution.
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optimized l on total overlap. The overall performance of
the various alignment algorithms is summarized in table 3.

As an alternative to fixing the indel parameters l and
r for the entire test set, we also computed maximum like-
lihood values for the indel parameters, and time, for each
sequence pair individually. Because of computing con-
straints, we only did this for a subset of our full test set.
Results were similar to the results for the given procedure
(data not shown).

The relationships between the model-based and
Homstrad MLTEs are shown in figure 4. The TKF91 time
estimates often diverged to infinity, probably as a result of
a bad model fit. This problem was less pronounced in
TKF92, and all but absent for the long indel model. All
model-based estimates of divergence times tend to be lower
than estimates based on Homstrad alignments, with least-
squares slopes (on data with outliers removed) in the range
0.75–0.78 for the three models, all significantly different
from 1. The hypothesis that the slopes for all three models
were equal could not be rejected at a 5% level.

Assessed on HOMSTRAD overlap, the TKF91
model is the least accurate alignment method, though it
is comparable to TKF92. The long indel model is clearly
better, and as good as the simple Gotoh algorithm. A

heuristic explanation to the weak performance of TKF91
and TKF92 is that in the absence of strong homology,
TKF91 tends to give very fragmented alignments, whereas
TKF92 alignment is at the other extreme: it prefers as few
fragments as possible.

At higher sequence identity all models perform much
better. This can clearly be seen for the long indel model in
figure 5, which plots the overlap for the long indel and
Gotoh algorithms as a function of Homstrad MLTE.

We plotted the Viterbi alignment together with its
posterior labeling, and we indicated the correctly aligned
columns for several sequence pairs. We found that
posterior labeling is a good indicator of correctness of
alignment (fig. 6).

Discussion

Using rate grammar notation, we have presented an
evolutionary model that allows multiple-residue indels
without introducing hidden information such as fragment
boundaries. We described alignment algorithms for our
long indel model, using a finite trajectory approximation.

Table 2
Estimated Evolutionary Parameters for Evolutionary
Models

Alignment Method l r a

TKF91 0.043 — —
TKF92 0.038 0.67 —
Long indel 0.049 0.543 —
Long indel, mixed geometric 0.095 0.55; 0.9 0.4

Table 3
Performance of Alignment Methods, as Measured by
Alignment Accuracy or ‘‘Overlap,’’ the Percentage of
Alignment Columns Identical to Those of the HOMSTRAD
Structural Alignments

Alignment Method
Training Set
Optimizationa

Test Set
Overlap (%)

TKF91 ML 73.8
TKF92 ML 75.9
Gotoh (BLOSUM62) NCBI defaults 80.9
Long indel ML 81.1
Long indel, mixed geometric Accuracy 82.1
Gotoh (BLOSUM62) Accuracy 82.2

a Parameters were optimized over a training set to maximize either likelihood

or overlap. In addition, for the Gotoh algorithm we used NCBI (National Center for

Biotechnology Information) defaults for gap opening and gap extension parameters.

FIG. 4.—Comparison of TKF91, TKF92, and long indel MLTEs (y-
axis) with Homstrad MLTEs (x-axis), see Results for definitions. The
dotted line is x¼ y. The TKF time parameters sometimes ran away during
ML parameter estimation, and thus appear at the very top of the graph.
Note that the model-based MLTEs tend to be lower than the Homstrad
MLTE, for all models. Small local database misalignments could cause
such an effect; see Discussion.

FIG. 5.—Accuracy of Gotoh and long indel alignment algorithms, as
a function of Homstrad MLTE.
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We implemented and tested the TKF91, TKF92, and long
indel models on structural alignments from HOMSTRAD.

Our data suggest that the long indel model gives
better time estimates than TKF92, which gives better
estimates than TKF91. An implication of this result is that
the long indel model is preferable for molecular phylog-
eny. In terms of alignment accuracy, the ordering is
TKF91 , TKF92 , long indel ’ Gotoh. The high
accuracy of the relatively simple Gotoh algorithm is
unexpected, and demonstrates that this algorithm remains
a powerful tool for molecular biologists.

Although there is no significant difference in align-
ment accuracy between Gotoh and the long indel model,
the latter provides more information about the alignment.
It allows us to compute posterior probabilities (‘‘reliabil-
ities’’) of individual alignment columns (Durbin et al.
1998). We find that these reliabilities are good predictors of
correctness of alignment (see fig. 6). The ability to assign
reliabilities to parts of the alignment is a major advantage
of using probabilistic, as opposed to score-based, models.

It is interesting to note that the divergence time
estimates obtained from the substitution model on

FIG. 6.—Maximum likelihood alignment of triacylglycerol hydrolase (Candida rugosa) and bile-salt–activated lipase (Bos taurus) using the long
indel model, and posterior probabilities (‘‘reliabilities’’) for individual aligned columns. Bold uppercase characters represent alpha helices, bold
lowercase characters represent 310 helices, and underlined characters represent beta-sheets. Correctly aligned columns are marked with asterisks. a. Part
of the alignment with high overlap with the HOMSTRAD structural alignment, showing that posterior probabilities are good indicators of correctness of
alignment. b. Part of the alignment without overlap with the structural alignment, corresponding to a marked decrease in posterior column probabilities.
This section is hard to align as sequences contain repetitive alpha helices in this region, and the Viterbi alignment shifted these alpha helices, causing no
correctly aligned residues for this part. c. HOMSTRAD structural alignment of the sequence segment of b.
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HOMSTRAD structural alignments are systematically
higher than those obtained from the evolutionary models,
which combine substitution and indel events (fig. 4). This
is surprising, because heterogeneous mutation rates along
the sequence can be expected to bias the estimates from
HOMSTRAD alignments toward lower values, because
regions experiencing a low mutation rate have more align-
able parts. Furthermore, all models investigated estimate
divergence times by considering both insertion-deletions
and substitutions. Therefore, unlike in score-based align-
ment methods, aligning more similar amino acids by
introducing more gaps does not automatically yield lower
time estimates. However, alignments based on structural
similarity might not always reflect homology, as small
shifts can occur because of the spatial extent and period-
icity of structural elements; see figure 7 for an example.
This biases the time estimates based on HOMSTRAD
alignments toward higher values, and this effect seems to
dominate.

The long indel alignment algorithm is rather slow, but
speedups are possible. Specifically, the current algorithm
uses an arbitrary emission-length Pair HMM.We anticipate
that our model can be reasonably well approximated with
a single-character emission Pair HMM, and this will yield
an algorithm with time complexity O(L2), like TKF91.

Our evaluation method used the HOMSTRAD align-
ments as a guide to trim the sequences to the alignable
regions. This means that the absolute alignment accuracies
of table 3 are probably overestimates. We chose this
method because the alignment algorithms we implemented
are global in nature; however, we plan to develop local
versions. Note that because of the long indel model’s in-
creased indel rate at both sequence ends, this data prepara-
tion method puts it at a slight disadvantage compared with
the other methods.

Although Gotoh’s algorithm has an advantage in our
comparison because Gotoh uses optimized parameters,
whereas for the evolutionary models we estimate param-
eters by maximum likelihood, accuracies for the long indel
model with estimated parameters closely approach those of
Gotoh’s algorithm (81.1% vs. 82.2%). This shows the
utility of ML parameter estimation for the long indel
model. The ability to use such objective parameter esti-
mation methods is a general advantage of probabilistic
models over score-based ones.

Using a hybrid method of optimization and curve
fitting, we estimated parameters for a mixed geometric
indel rate distribution, resulting in a further improved
alignment accuracy (to 82.1%). It is interesting that Gotoh
reaches this accuracy without such sophisticated models.
To test whether Gotoh’s success was due to the
BLOSUM62 matrix, we tried forcing our long indel algo-
rithm to use BLOSUM62, but this did not perform any
better than our ML rate matrix. One factor that might be
relevant, however, is that affine gap penalties were used in
constructing the HOMSTRAD structural alignments.
These particular penalties will bias the resulting gap length
distribution, which will naturally favor Gotoh’s algorithm.

In general, there may be theoretical limits to the
accuracy obtainable with respect to databases such as
HOMSTRAD: the homology signal may be too weak in

places (Holmes and Durbin 1998), or structural and
sequence homology may be mutually inconsistent. None-
theless, the enhanced performance of the long indel model
over TKF91 and TKF92 is grounds for encouragement. Its
performance is comparable with that of Gotoh’s algorithm.
In addition, it allows for inference of evolutionary
divergence, and it provides information on the reliability
of different parts of the alignment. This information can be
useful, e.g., for 3D structural modeling, where reliable
regions can be used as a seed for homology modeling.

By sampling alignments in local neighborhoods on
a phylogenetic tree, a multiple-sequence Markov Chain
Monte Carlo (MCMC) version of our alignment algorithm
can be constructed [Holmes and Bruno 2001; Jensen and
Hein 2002]. In this context, the trajectory likelihood algo-
rithm of Appendix A will again be useful. As the corpus of
data from large-scale sequencing projects grows and our
understanding of molecular evolution deepens, the incorpo-
ration of this understanding leads to more realistic models,
that often cannot be solved analytically. This is especially
common when the state space of such models is large, as is
the case for whole-sequence models. In such situations,
MCMC approaches can be used (Pedersen and Jensen
2001; Robinson et al. 2003). Since the algorithm of
Appendix A applies to general discrete-state continuous-
time Markov models, it is useful for any MCMC procedure
that samples trajectories of such models [Robinson et al.,
2003]. So, with our algorithm, it is possible to avoid sam-
pling event times (which are true nuisance variables) and
thus to improve the performance of the MCMC procedure.

The long indel model is the first evolutionary model to
incorporate realistic long indel events without introducing
hidden information. As such, it should find applications in
alignment, phylogenetic analysis and profiling.

Appendix A: Trajectory Likelihoods

In this appendix we describe how to calculate
likelihoods of histories and trajectories through some state
space. Here, we use the terminology that a trajectory is
a path through state space, /0 ! /1 ! � � � !/N, while
a history is a path with times t1, . . . , tN for each change of
state.

Because the probability of an event occurring in an
infinitesimal time interval is vanishingly small, individual
histories have infinitesimal likelihood, but finite likeli-
hood density. Suppose that the model starts in state /0 at
time t0 ¼ 0. At time t1, it mutates to state /1; at time t2,
it mutates to /2; and so on up to /N at time tN � T.
Setting tNþ1 ¼ T, the likelihood density of this history
for the time interval 0 � t � T, conditional on the initial
state, is

f ð /0; t1;/1; . . . ; tN;/Nf g j /0Þ
¼ e�f0ðt1�t0Þr1e

�f1ðt2�t1Þr2 � � � rNe�fNðtNþ1�tNÞ; ð19Þ
where fi ¼ �R(/i,/i) is the total mutation rate (the exit
rate) of state /i, and ri ¼ R(/i�1,/i) is the rate of the
specific mutation /i�1! /i. The likelihood of a trajectory
is obtained by integrating the history likelihood density
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over the N variables t1 . . . tN, where t0 � t1 � � � � � tN �
T, and we set t0¼ 0:

Pð/0 ! � � � ! /N; T j /0Þ

¼
Z T

t1¼t0

� � �
Z T

tN¼tN�1

f ð /0; t1 . . . tN;/Nf gÞdt1 . . . dtN:

ð20Þ

Note that the likelihood is invariant under permutation of
the exit rates f0, . . . , fN. An equivalent, recursive formula
for this likelihood is

Pð/0 ! � � � ! /N; T j /0Þ

¼

R T

0
Pð/0 ! � � � ! /N�1; t j /0Þ
3 rNe�fNðT�tÞdt if N . 0

e�f0T if N ¼ 0,

8><
>: ð21Þ

with fi and ri defined as before.
A subtlety arises in the following analysis if there

is degeneracy in the set of exit rates; that is, if any of
the rates f0, . . . , fN are equal. To account for this, we
suppose that fn0, . . . , nMg is the corresponding set of
rates with duplicates removed (so M � N), and let
dn þ 1 be the multiplicity of the nondegenerate rate nn

among the rates f0, . . . , fN; thus, exit rate n0 occurs
d0 þ 1 times, exit rate n1 occurs d1 þ 1 times, and so on;
therefore

P
di ¼ N � M.

As a trial solution, we write the likelihood in the
form

Pð/0 ! � � � ! /N; T j /0Þ

¼
YN

n¼1
rn

 !XM

n¼0
e�nnT

Xdn

k¼0
ck

nTk; ð22Þ

where ck
n is the coefficient of Tk in the polynomial

multiplying e�nnT . These coefficients can be computed
by a recursive algorithm that we now describe. The
algorithm makes use of the following identity for x 6¼ 0,
k � 0:

ð�xÞkþ1

k!

Z T

0

tketx dt ¼ 1� eTx
Xk

i¼0

ð�TxÞi

i!
; ð23Þ

which can be derived by writing the left-hand side as
Ikþ1 whereupon integration by parts shows that
Ikþ1 ¼ Ik � eTx ð�TxÞk

k! , taking I0 ¼ 1. This identity is used
as follows. Suppose the ck

n are known for some trajectory
f/0, . . . , /Ng, and we wish to calculate new coefficients
for the trajectory f/0, . . . , /Nþ1g which is one step longer.
Using the recursive definition of the trajectory likelihood
we get

Pð/0 ! � � � ! /Nþ1; T j /0Þ

¼
YN

n¼1
rn

 !Z T

t¼0

XM

n¼0
e�nnt

Xdn

k¼0
ck

ntk

 !
rNþ1e

�fðT�tÞdt

¼
YNþ1
n¼1

rn

 !XM

n¼0

Xdn

k¼0
ck

ne�fT

Z T

t¼0
tkeðf�nnÞtdt;

ð24Þ

where we wrote f ¼ fN þ 1. For fixed n, the inner sum-
mation over k depends on whether f¼nn or not. If they are
different, the result is

Xdn

k¼0
ck

n e�fT k!

ðnn � fÞkþ1
� e�nnT

Xk

i¼0

k!Ti

i!ðnn � fÞk�iþ1

 !
;

ð25Þ

whereas when f ¼ nn we get

Xdn

k¼0
ck

ne�nnT Tkþ1

k þ 1
ð26Þ

Now if f is not in fn0, . . . , nMg we set nMþ1¼ f and M9¼
Mþ 1, otherwise M9¼M. Writing the solution in the form
(22) with coefficients ck9

n , we get for n ¼ 0, . . . , M9:

ck9
n ¼ �

Xdn

i¼k

ci
n

i!

k!ðnn � fÞi�kþ1 ; ðf 6¼ nn; k ¼ 0; . . . ; dnÞ

ð27Þ

c09n ¼
X
m 6¼n

Xdm

i¼0
ci

m

i!

ðnm � fÞiþ1
; ðf ¼ nnÞ ð28Þ

ck9
n ¼

ck�1
n

k
ðf ¼ nn; 1 � k � dn þ 1Þ; ð29Þ

so that if we set d9
n¼ dn if f 6¼ nn, and d9

n¼ dnþ 1 if f¼ nn,
we recover the form of the trial solution (22), and the d9

n
indeed correspond to the multiplicities of the rates nn as
asserted. This leads to the following algorithm:

Algorithm 1 (Trajectory likelihood)

Input: Transition rates r1, . . . , rN; exit rates f0, . . . , fN;
time T.

Output: Probability P(/0 ! � � � ! /N;T j/0) for the
trajectory with rates ri and fi.

Algorithm:
M  0; n0  f0; d0  0; c00  1.
For i from 1 to N, do the following:

If fi =2 fn0, . . . , nMg, then:
M  M þ 1; nM  fi; dM  0

Else:
dj  djþ 1, for the j satisfying fi ¼ nj.

EndIf
For n from 0 to M, then for k from 0 to dn, do
the following:

If nn 6¼ fi, then:

uk9
n  �

Pdn

j¼k

cj
n

j!

k!ðnn�fiÞj�kþ1

FIG. 7.—Part of HOMSTRAD structural alignment of Bos taurus S-
arrestin (amino acids 1–27) and beta-arrestin 1 (amino acids 1–26),
clearly shifted with respect to their homology.
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Else:
If k ¼ 0, then:

uk9
n  

P
m6¼n

Pdm

j¼0
cj

m
j!

ðnm�fiÞjþ1

Else:

uk9
n  ck�1

n =k

EndIf
EndIf

EndFor (n and k)

ck
n  uk9

n , for n ¼ 0, . . . , M and k ¼ 0, . . . , dn.

EndFor (i)

Return
QN
n¼1

rn

� � PM
n¼0

e�nnT
Pdn

k¼0
ck

n Tk

This algorithm has computational time complexity O(N2).
Two special cases are worth noting, because the coef-
ficients can be obtained in closed form. If no two rates fn,
fm are equal, then dn¼ 0 and c0n ¼

Q
m 6¼n(fm� fn)

�1. If all
the rates fn are identical, then d0¼ N and cN

0 ¼ 1/N! while
ck
0 ¼ 0 for k , N; apart from a factor rn/fn, this is just the
Poisson distribution for the number of mutation events N.

The expected amount of evolutionary time spent in
a particular state / can be found using a variation of this
recursion.

Appendix B: Consistency Relations

Because of the complicated combinatorics involved
in computing the chop zone probabilities Nij, Lij, Rij, and
Bij, it is useful to have some consistency checks:

ciþ1Xij ¼ cjþ1Xji ðwhere X is one of L;N;R;BÞ; ð30ÞX‘
i;j¼0

Lijc
iþ1 þ

X‘
i;j¼0

Bijc
i ¼ 1; ð31Þ

X‘
i;j¼0

Nijc
iþ1 þ

X‘
i;j¼0

Rijc
i ¼ 1; ð32Þ

X‘
i¼0

L0;i ¼ e�
P‘

k¼1
klk ;

X‘
i¼0

N0;i ¼ e�
P‘

k¼1
lk ; ð33Þ

X‘
i¼0

R0;i ¼ 1;
X

i;j

Ni;j ¼ 1: ð34Þ

Equations (30) express detailed balance, and hold because
of reversibility of the model. Equations (31) and (32) assert
that the exit probability of Markov states I and M resp. are
1. The survival probabilities of the first nucleotide of a left
or central chop zone are related to chop zone probabilities
by (33). Equations (34) finally sum out all possibilities at
the end of the sequence when there are no nucleotides to
delete, and all possible chop zones for an infinitely long
sequence, respectively.

Equations (30) also hold for finite-order approxima-
tions; the others are only true for the exact probabilities,
but are useful nonetheless to spot errors.

Appendix C: Posterior Likelihood

As with generic HMMs, it is possible to compute the
posterior likelihood of particular alignment columns by

calculating the likelihood of visiting a certain state using
the Forward-Backward algorithm (Durbin et al. 1998). As
a consequence of employing the Mealy machine view, to
compute the reliability of an unaligned residue, we have to
sum over all possible transitions associated to this possi-
bility. Because many transitions may contribute to the
emission of an unaligned residue, this is an expensive
operation; however, there exists a dynamic programming
solution.

Let Fi
j be the ‘‘forward’’ recursion as given in the

section titled, Dynamic Programming, and Gi
j the result

of the corresponding Backward algorithm. If Ui is the
posterior probability that ancestral residue i is unaligned,
then

U1 ¼ pðAÞqðBÞ
XjAj�1
i¼1

XjBj�1
j¼0

Lij

PtðAiþ1 ! Bjþ1Þ
qðBjþ1Þ

Giþ1
jþ1 þ BjAj;jBj

 !

ð35Þ

Unþ1 ¼ Un þ
XjBj�1
j¼0

Fn
jþ1RjAj�n;jBj�j�1 � Ln�1;j

PtðAn ! Bjþ1Þ
qðBjþ1Þ

Gn
jþ1

� � 

þ
XjBj�2
k¼0

XjAj�n�1

i¼1

XjBj�k�2

j¼0
Fn

kþ1Nij

PtðAnþiþ1 ! Bkþjþ2Þ
qðBkþjþ2Þ

Gnþiþ1
kþjþ2

2
XjBj�2
k¼0

Xn�1
i¼0

Xk

j¼0
Fn�i

k�jþ1Nij

PtðAnþ1 ! Bkþ2Þ
qðBkþ2Þ

Gnþ1
kþ2

!
pðAÞqðBÞ

ð36Þ

Here q(B)¼
QjBj

i¼1 q(Bi). A similar recursion exists for the
unaligned residues of the descendant sequence. The
running time for these recursions is the same as for the
Forward and Backward recursions.
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