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BACKGROUND GENOME-WIDE 
ASSOCIATION STUDIES IN BACTERIA 



GWAS in bacteria 
Example questions 

¢  Do Staphylococcus aureus genomes vary in their propensity to  
 cause invasive disease vs asymptomatic carriage? 

¢  Are there genetic differences in the Clostridium difficile population 
 that explain differential mortality among infections? 

¢  Can we pinpoint the mutations conferring antibiotic resistance in 
 Mycobacterium tuberculosis? 



GWAS in bacteria: methods 
Can we adapt Genome Wide Association Studies (GWAS) to address 
challenges particular to bacteria? 
 
¢  Strong structuring of populations into distinct clusters of highly-related 

strains 

¢  Weak decay of linkage disequilibrium within the core genome 

¢  Highly mobile accessory genomes 

Will Bacterial GWAS have power to fine map the genetic basis of key 
traits? 



1. The Challenge of  Bacterial Population Structure 
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1. The Challenge of  Bacterial Population Structure 
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2. The Challenge of  Bacterial Linkage Structure 

Points show the position of  
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linkage disequilibrium  
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Human chromosome 1 Staphylococcus aureus 

Physical position on chromosome (base pairs) 



Bacterial GWAS pipeline 

◦ To capture diverse forms of  bacterial genetic diversity (SNPs, indels, repeats, gene presence/
absence, mobile elements) we adopt a multipronged approach 

a 

  
b 

 
c 

 
Supplementary Figure 2. (a) Overview of our approach. We identify significant loci and lineages, and 
the most significant loci within significant lineages. (b) Kmer analysis of hard-to-reach diversity. Some 
diversity (e.g. indels, repeats) is difficult to capture using standard variant calling tools. We directly 
analyse presence/absence of short haplotypes (kmers) to make sure we don’t miss any associations. A 
kmer is a sliding window (in our case 31 bases long) of contiguous sequence. (c) Capturing the 
accessory genome. Differential presence or absence of genes or entire mobile elements is an important 
source of diversity in bacterial genomes. We test for associations with gene presence/absence by 
defining the accessory genome using Cd-hit and profiling each bug using BLAST. 
  

!"#$%&'(%)*+,#-'+./+,'0)12)

!'02&)+34-&)#%'*)+
5#&/6#$7"'(6

8)0)+5$)()0-)9
:.()0-)

;6)$ 5$)()0-)9
:.()0-)

!"#$%&'(%)*+,#-'

<674%1%'#0

!"#$%&'(%)*+,'0)12)(

=#$$)-%+>#$+?4&%'7&)+@)(%'02

!"#$%&

A1-%)$'1&+8)0#6)(+10*+@$1'%(

,#-4(+)>>)-%( ,'0)12)+)>>)-%(

=#0%$#&+>#$+5#74&1%'#0+!%$4-%4$)

!"##!"!"!#"""$"""!"###!$!!!!$$$"!$!!""!!"!!!!##"#!$"

!"##!"!"!#"""$"""!"###!$!!!!$$$
"##!"!"!#"""$"""!"###!$!!!!$$$"
##!"!"!#"""$"""!"###!$!!!!$$$"!
#!"!"!#"""$"""!"###!$!!!!$$$"!$
!"!"!#"""$"""!"###!$!!!!$$$"!$!
"!"!#"""$"""!"###!$!!!!$$$"!$!!
!"!#"""$"""!"###!$!!!!$$$"!$!!"
"!#"""$"""!"###!$!!!!$$$"!$!!""
!#"""$"""!"###!$!!!!$$$"!$!!""!

(1) Trim adaptors
(2) Remove duplicates
(3) Remove low quality reads
(4) Count 31 base kmers (DSK)
(5) Deduplicate kmers
(6) Annotate kmers by BLAST
(7) Test each for association

(1) Assemble reads with Velvet

(2) Annotate open reading frames on contigs (Prodigal)
MDDAYYGLFYEDVKHV* MLFTALSNLNSNAILPVRLDGV*

(3) Cluster proteins into groups of ≥70% similarity with Cd-hit
MTAGFFLLNMSSIIDKKIYVLSKNNMVEKTSSK* * <- cluster represented by longest sequence
MTAGFFLLNMSSIIDKKIYVLSKNNMVEK*
MTAGFFLLNMSSIIDKKIYVLSKNNNVEK*
MTAGFFLLNMSSIIDKKIYVLSKNNMVEKTSSK*

(4) BLAST against contigs to assess 
presence/absence of each gene

>GENE1 0 1 1 1 1 1
>GENE2 0 0 0 0 0 1
>GENE3 1 0 1 0 0 1 

(5) Test each gene for association with 
phenotype



Null hypothesis: no genetic variant is associated with case vs control status 

Single nucleotide polymorphisms 
(SNPs) 

Presence vs absence of  
short haplotypes (kmers) 

Presence vs absence of  
entire genes 

e.g.  Resistance to penicillin  
 conferred by the blaZ gene 
 p = 10-71.3 

Controls 
(Susceptible) 

Cases 
(Resistant) 

Absent 
(blaZ-) 59 3 

Present 
(blaZ+) 0 439 

e.g.  Resistance to ciprofloxacin 
 conferred by S84L substitution in the gyrA gene 
 p = 10-114.9 

Controls 
(Susceptible) 

Cases 
(Resistant) 

C 
(TCA/Ser) 326 10 

T 
(TTA/Leu) 3 161 

e.g.  Resistance to methicillin 
 conferred by the mecA gene that contains the sequence  
 AAAACAAGTTATAAAATCGATGGTAAAGGTT 
 p = 10-109.2 

Controls 
(Susceptible) 

Cases 
(Resistant) 

Absent 
(kmer-) 342 1 

Present 
(kmer+) 0 158 



Fusidic	acid	resistance	in	Staphylococcus	aureus	

Protein synthesis requires 
elongation factor G (EF-G) to 
proceed normally 

Fusidic acid (FA) binds to EF-G, 
locking it to the ribosome and 
stalling protein synthesis. 
Mutations in fusA, the gene 
encoding EF-G, prevent FA 
binding, allowing protein 
synthesis to proceed. 

Accessory genes fusB and fusC 
encode chaperones that bind to 
EF-G and destablize binding of  
FA. This promotes dissociation 
of  FA and allows protein 
synthesis to proceed. 

Credit: Georgina Cox 



Posi/on	in	reference	genome	MSSA476	(Mb)	
0.5	 1	 1.5	 2	 2.5	0	

0	
20
	

40
	

60
	

80
	

10
0	

12
0	

Unmapped	

fusC and SCC genes 

-lo
g 1

0	p
	χ
2 	t
es
t	

31mer presence/absence versus resistance/sensitivity 

ManhaHan	plot:	Fusidic	acid	resistance	χ2	test	



ADDRESSING THE CHALLENGES OF 
BACTERIAL GWAS 



Controlling for population stratification  
◦ This phrase covers the following artefacts 

•  Linkage disequilibrium with genuine causal variants that are population-stratified 

•  Uncontrolled environmental variables that are population-stratified 

•  Population-stratified differences in sampling 

•  Sensitivity to over-sampling close relatives (i.e. same genotypes and environments) 



What can go wrong in GWAS? 

Type I errors Type II errors 

0. Grand null 
No association 

Find any variant n/a 

1. Simple alternative 
One causal variant 

Find the wrong variant Miss the right variant 

2. Complex null 
Confounding 

Find any variant n/a 

3. Complex alternative 
Confounding plus  
one interesting variant 

Find the wrong variant Miss the right variant 

In the eukaryotic setting, where LD is localized and block-like, determination of  whether a GWAS hit is 
right or wrong is often considered at the level of  the LD block, rather than individual variants. 
For bacteria, where LD is not block-like, this does not work. 



Control of  population structure 
◦ Genomic control 
◦ Directly adjust the p-values so the vast majority are non-significant 

◦ Subpopulations 
◦ Expect individuals in the same subpopulation to have phenotypes that are more similar 

◦ Principal components analysis (PCA) 
◦ Expect individuals with similar principal components to have phenotypes that are more similar 

◦ Linear mixed models 
◦ Expect individuals that are closely related to have phenotypes that are more similar 



BACTERIAL GWAS IN 
PRACTICE 



Posi/on	in	reference	genome	MSSA476	(Mb)	
0.5	 1	 1.5	 2	 2.5	0	

0	
20
	

40
	

60
	

80
	

10
0	

12
0	

Unmapped	

fusC and SCC genes 

-lo
g 1

0	p
	χ
2 	t
es
t	

Fusidic	acid	resistance	χ2	test	



Posi/on	in	reference	genome	MSSA476	(Mb)	
0.5	 1	 1.5	 2	 2.5	0	

0	
20
	

40
	

60
	

80
	

10
0	

12
0	

Unmapped	

fusC and SCC genes 

fusA gene 

Li
ne

ar
 M

ix
ed

 M
od

el
 (L

M
M

) -
lo

g 1
0 p
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Leading	principal	components	correspond	to	major	lineages	
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Fusidic	acid	resistance	in	S.	aureus	
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This provides another “dimension” for choosing variants for 
functional follow-up because it allows prioritization of  groups of  
variants that are individually non-significant (judging by their locus 
effects), but collectively highly significant (from their lineage 
effects).  
 
However, there is a trade-off  because lineage effects are more 
susceptible to confounding. 



Bacterial GWAS pipeline 
a 

  
b 

 
c 

 
Supplementary Figure 2. (a) Overview of our approach. We identify significant loci and lineages, and 
the most significant loci within significant lineages. (b) Kmer analysis of hard-to-reach diversity. Some 
diversity (e.g. indels, repeats) is difficult to capture using standard variant calling tools. We directly 
analyse presence/absence of short haplotypes (kmers) to make sure we don’t miss any associations. A 
kmer is a sliding window (in our case 31 bases long) of contiguous sequence. (c) Capturing the 
accessory genome. Differential presence or absence of genes or entire mobile elements is an important 
source of diversity in bacterial genomes. We test for associations with gene presence/absence by 
defining the accessory genome using Cd-hit and profiling each bug using BLAST. 
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(1) Trim adaptors
(2) Remove duplicates
(3) Remove low quality reads
(4) Count 31 base kmers (DSK)
(5) Deduplicate kmers
(6) Annotate kmers by BLAST
(7) Test each for association

(1) Assemble reads with Velvet

(2) Annotate open reading frames on contigs (Prodigal)
MDDAYYGLFYEDVKHV* MLFTALSNLNSNAILPVRLDGV*

(3) Cluster proteins into groups of ≥70% similarity with Cd-hit
MTAGFFLLNMSSIIDKKIYVLSKNNMVEKTSSK* * <- cluster represented by longest sequence
MTAGFFLLNMSSIIDKKIYVLSKNNMVEK*
MTAGFFLLNMSSIIDKKIYVLSKNNNVEK*
MTAGFFLLNMSSIIDKKIYVLSKNNMVEKTSSK*

(4) BLAST against contigs to assess 
presence/absence of each gene

>GENE1 0 1 1 1 1 1
>GENE2 0 0 0 0 0 1
>GENE3 1 0 1 0 0 1 

(5) Test each gene for association with 
phenotype



Genuine	resistance-conferring	
variants	were	detected	in	all	but	
one	study	

Resistance	determined	by	gene	
presence	
Resistance	determined	by	SNPs	
	
Resistance	determined	by	gene	
presence	or	SNPs	or	both	

Most	significant	variant	was	the	expected	
mechanism	

Most	significant	variant	was	in	physical	
linkage	(PL)	with	the	expected	mechanism	

Most	significant	variant	was	not	the	
expected	mechanism	or	in	PL	with	the	
expected	mechanism	

Table 1 Number of resistant and sensitive isolates by species and antibiotics, known mechanisms of resistance and main results. The rank of the most significant result for an 
expected causal mechanism for each GWAS is reported, plus in brackets the gene that was most significant when it was not causal. Where more than one gene or 
mechanism causes resistance, the variant we found was underlined, or referred to by a and b. R = Resistant. S = Sensitive. HP = Hypothetical Protein, tnp = transposase. See 
Supplementary tables 3-6 for more detail.  
 

Resistance determined by gene presence Most significant variant was the expected mechanism

   Resistance determined by SNPs    Most significant variant was in physical linkage (PL) with the expected 
             Mechanism

   Resistance determined by gene presence or SNPs or both    Most significant variant was not the expected mechanism or in PL with the 
             expected mechanism

 Antibiotic # R # S Resistance mechanism SNP / gene LMM Kmer LMM 
E. coli      
 Ampicillin  189 52 β-lactamase genes 

blaTEM   

 Cefazolin 62 179 β-lactamase genes 
blaCTX-M   

 Cefuroxime 81 160 β-lactamase genes 
blaCTX-M   

 Ceftriaxone 55 186 β-lactamase genes 
blaCTX-M   

 Ciprofloxacin  91 150 SNPs in gyrAa, gyrB, parCb or parE or 
presence of PMQR   

 Gentamicin  48 193 AAC (aac(3)-II),  ANT, APH or rRNA 
methylase   

 Tobramycin 67 174 AAC (aac(3)-II),  ANT, APH or rRNA 
methylase   

K. pneumoniae      
 Cefazolin 38 138 β-lactamase genes  

blaCTX-M   

 Cefuroxime 46 130 β-lactamase genes  
blaCTX-M   

 Ceftriaxone 35 141 β-lactamase genes 
blaCTX-M   

 Ciprofloxacin 34 142 SNPs in gyrA, gyrB, parC or parE or 
presence of PMQR (qnr-B1a, qnr-B19b)   

 Gentamicin  31 145 AAC (acc(3)-II),  ANT, APH or rRNA 
methylase   

 Tobramycin 36 140 AAC (acc(3)-II),  ANT, APH or rRNA 
methylase   

M. tuberculosis      
 Ethambutol 41 1589 embB   
 Isoniazid 239 1470 katG, mabA or fabG1   
 Pyrazinamide 45 1662 pncA   
 Rifampin 86 1487 rpoB   
S. aureus      
 Ciprofloxacin 242 750 grlA or gyrA   
 Erythromycin 216 776 ermA, ermC, ermT or msrA   
 Fusidic acid 84 908 SNPs in fusAa or presence of fusB or 

farb   

 Gentamicin 11 981 aacA/aphD   
 Penicillin 824 168 blaZ 

  

 Methicillin 216 776 mecA   
 Tetracycline 46 946 tetK, tetL or tetM   

 Trimethoprim 15 308 SNPs in dfrB, presence of dfrG or dfrA    
 Rifampicin 8 984 rpoB   

Earle et al 2016 Nature Microbiology 



Klebsiella pneumoniae (n = 176) 

Staphylococcus aureus (n ≤ 992) 

Escherichia coli (n = 241) 

Mycobacterium tuberculosis (n ≤ 1954) 

Tes/ng	the	ability	of	GWAS	to	detect	genes	and	gene/c	variants	
underlying	an/microbial	resistance	
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FURTHER GWAS EXAMPLES 



GWAS for toxicity 
Research

Predicting the virulence of MRSA from its genome
sequence
Maisem Laabei,1,11 Mario Recker,2,11 Justine K. Rudkin,1 Mona Aldeljawi,1

Zeynep Gulay,3 Tim J. Sloan,4 Paul Williams,4 Jennifer L. Endres,5 Kenneth W. Bayles,5

Paul D. Fey,5 Vijaya Kumar Yajjala,5 Todd Widhelm,5 Erica Hawkins,1 Katie Lewis,1

Sara Parfett,1 Lucy Scowen,1 Sharon J. Peacock,6 Matthew Holden,7 Daniel Wilson,8

Timothy D. Read,9 Jean van den Elsen,1 Nicholas K. Priest,1 Edward J. Feil,1

Laurence D. Hurst,1 Elisabet Josefsson,10 and Ruth C. Massey1,12

1Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom; 2College of Engineering, Mathematics &

Physical Sciences, University of Exeter, Exeter EX4 4QF, United Kingdom; 3Department of Clinical Microbiology, School of Medicine,

Dokuz Eylul University, 35210 Konak, Turkey; 4Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD,

United Kingdom; 5Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900,

USA; 6Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom; 7The Wellcome

Trust Sanger Institute, Cambridge CB10 1SA, United Kingdom; 8Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN,

United Kingdom; 9Department of Human Genetics, Emory University, Atlanta, Georgia 30322, USA; 10Department of Rheumatology

and Inflammation Research, University of Gothenburg, 405 30 Gothenburg, Sweden

Microbial virulence is a complex and often multifactorial phenotype, intricately linked to a pathogen’s evolutionary tra-
jectory. Toxicity, the ability to destroy host cell membranes, and adhesion, the ability to adhere to human tissues, are the
major virulence factors of many bacterial pathogens, including Staphylococcus aureus. Here, we assayed the toxicity and ad-
hesiveness of 90 MRSA (methicillin resistant S. aureus) isolates and found that while there was remarkably little variation in
adhesion, toxicity varied by over an order of magnitude between isolates, suggesting different evolutionary selection
pressures acting on these two traits. We performed a genome-wide association study (GWAS) and identified a large number
of loci, as well as a putative network of epistatically interacting loci, that significantly associated with toxicity. Despite this
apparent complexity in toxicity regulation, a predictive model based on a set of significant single nucleotide polymorphisms
(SNPs) and insertion and deletions events (indels) showed a high degree of accuracy in predicting an isolate’s toxicity solely
from the genetic signature at these sites. Our results thus highlight the potential of using sequence data to determine clinically
relevant parameters and have further implications for understanding the microbial virulence of this opportunistic pathogen.

[Supplemental material is available for this article.]

A key factor affecting the severity and outcome of any infection
is the virulence potential of the infecting organism. If the viru-
lence phenotype could be determined directly from its genome
sequence, next generation sequencing technology would provide
for the first time an opportunity to make predictions of virulence at
an early stage of infection. Since the first whole genome sequence
of a free-living organism, Haemophilus influenzae, was published
(Fleischmann et al. 1995) sequencing technology has advanced to
a stage where a bacterial genome can be sequenced in a matter of
hours (Parkhill and Wren 2011; Didelot et al. 2012a; Eyre et al.
2012; Köser et al. 2012a). This has led to an explosion of genomic
data that has allowed us to monitor outbreaks in hospitals (Köser
et al. 2012b; Young et al. 2012; Harris et al. 2013; Sherry et al.
2013; Walker et al. 2013), track strains transitioning from carrier
to invasive status (Young et al. 2012), and perform detailed epi-
demiological studies to understand aspects of pathogen biology

(Castillo-Ramı́rez et al. 2011, 2012; Didelot et al. 2012b; McAdam
et al. 2012; Holden et al. 2013). While some success has also been
made in predicting phenotype from genotype, such as the anti-
microbial resistance (Farhat et al. 2013; Holden et al. 2013),
for more complex phenotypes, such as virulence, involving the
contribution of several genes, this has not yet been possible.
Furthermore, complex interactions between genes (epistasis) are
not apparent from genome sequences alone, nor is the effect of
epigenetics (Borrell and Gagneux 2011; Jelier et al. 2011; Beltrao
et al. 2012; Bierne et al. 2012).

Staphylococcus aureus is a major human pathogen, the treat-
ment of which has been complicated by the worldwide emergence
of multiple lineages that have acquired resistance to methicillin
(methicillin resistant S. aureus, MRSA) (Lowy 1998; Gordon and
Lowy 2008; Otto 2010). Its virulence is conferred by the activity
of many effector molecules which can be broadly grouped into
being either toxins (Lowy 1998; Gordon and Lowy 2008; Otto
2010)—factors that cause specific tissue damage in the host, or

! 2014 Laabei et al. This article, published in Genome Research, is available
under a Creative Commons License (Attribution 4.0 International), as described
at http://creativecommons.org/licenses/by/4.0.

11These authors contributed equally to this work.
12Corresponding author
E-mail r.c.massey@bath.ac.uk.
Article published online before print. Article, supplemental material, and
publication date are at http://www.genome.org/cgi/doi/10.1101/gr.165415.113.
Freely available online through the Genome Research Open Access option.

24:000–000 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/14; www.genome.org Genome Research 1
www.genome.org

 Cold Spring Harbor Laboratory Press on April 9, 2014 - Published by genome.cshlp.orgDownloaded from 

a hierarchical clustering algorithm (pvclust) in R, which showed
strong bootstrap support for three main clusters (Supplemental
Fig. 5), two of which contained all the highly toxic strains. We
then performed a permutation procedure in PLINK, correcting
for cluster membership, to obtain empirical P-values. Out of the
122 polymorphisms previously identified, only one (snp1360889)

fell out using this procedure. Unfortu-
nately, the limited sample size prevented
us from using a more detailed clustering
approach.

These SNPs and indels were distrib-
uted across the genome amongst mobile
genetic elements, genes involved in me-
tabolism and regulation, in hypothetical
genes, and in intergenic regions. Two
genes previously shown to affect the
expression of toxins contained signifi-
cantly associated SNPs: mecA (Rudkin et al.
2012) and agrC (Ji et al. 1995; Novick and
Geisinger 2008), which provided some
proof of principle for the validity of our
approach. Mobile genetic elements, such
as the S. aureus pathogenicity Island I
(SaPI1) (Ruzin et al. 2001) and the beta-
haemolytic converting phage (Bae et al.
2006), also contained several associated
genetic changes, implying that variabil-
ity in many diverse regions of the genome
contributes to the toxicity of a given iso-
late. Some of the polymorphisms appeared
to be in linkage disequilibrium (Supple-
mental Fig. 6A), which will increase the
rate of false positive associations, but many
were uniquely occurring (i.e., unique pat-
terns of polymorphisms across isolates)
(Supplemental Fig. 6B).

This GWAS approach requires no
evidence of repeatability of a signal, just
an excess association between a SNP and
the phenotype in question, and as such is
likely to produce false positives with
linkage disequilibrium and phylogenetic
structure affecting the outcome. We there-
fore performed a second, more stringent
approach, similar to those described in
other recent work (Farhat et al. 2013;
Sheppard et al. 2013), which instead re-
quires repeatable independent evolution
of a marker to be associated with the
phenotype (toxicity). Although this ap-
proach should have a lower false positive
rate, it is likely to produce a higher false
negative rate. We focused on four clus-
ters of isolates (indicated on Fig. 1B):
cluster 1 (isolates IU20–IU2), cluster 2
(isolates HU16–HU13), cluster 3 (isolates
MU2–IU7), and cluster 4 (isolates DEU3–
DEU19). Clusters 1 and 2 contained the
majority of the highly toxic isolates in
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2 but are absent from clusters 3 and 4 suggests that they have arisen
independently. As such they are likely to be causative as they are
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ciated significantly with toxicity, only four were found in both high-
toxicity clusters (1 and 2) but not in their sister, low-toxicity clusters
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GWAS for host association 
Genome-wide association study identifies vitamin B5
biosynthesis as a host specificity factor
in Campylobacter
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Genome-wide association studies have the potential to identify
causal genetic factors underlying important phenotypes but have
rarely been performed in bacteria. We present an association
mapping method that takes into account the clonal population
structure of bacteria and is applicable to both core and accessory
genome variation. Campylobacter is a common cause of human
gastroenteritis as a consequence of its proliferation in multiple
farm animal species and its transmission via contaminated meat
and poultry. We applied our association mapping method to iden-
tify the factors responsible for adaptation to cattle and chickens
among 192 Campylobacter isolates from these and other host
sources. Phylogenetic analysis implied frequent host switching
but also showed that some lineages were strongly associated with
particular hosts. A seven-gene region with a host association sig-
nal was found. Genes in this region were almost universally pres-
ent in cattle but were frequently absent in isolates from chickens
and wild birds. Three of the seven genes encoded vitamin B5 bio-
synthesis. We found that isolates from cattle were better able to
grow in vitamin B5-depleted media and propose that this differ-
ence may be an adaptation to host diet.

evolution | genomics | host adaptation | transmission ecology

Colonization of multiple host species increases the number of
transmission opportunities for animal pathogens and sym-

bionts but depends on making rapid adjustments to each new host
(1). For organisms such as Campylobacter, relatively small ge-
nome size (1.6 Mb) limits the phenotypic flexibility of each bac-
terium. Single clones can multiply to large numbers within hosts,
and genetic variation arising among these bacteria increases the
range of available phenotypes. This might allow a bacterial line-
age to passage successfully through multiple hosts by repeatedly
evolving host adaptive traits.
Experimental work has shown that a large proportion of adap-

tations to new environments incur an equal or greater cost in other
environments (2). This cost of adaptation might make a strategy of
continuous evolution unstable by causing a progressive loss of
fitness in the course of repeated host switching. Three factors that
could reduce this cost of readaptation are canalization of genetic
change via contingency loci (3, 4); coordinated genetic regulation
of host-specific factors (5, 6); and import of DNA by recom-
bination from other, already adapted, lineages in each new host
species (7). The relative importance of these mechanisms for host
specificity in Campylobacter remains unknown.
Campylobacter jejuni and Campylobacter coli are common

components of the gut microbiota in numerous wild and domes-
ticated animal species, as well as, together, being one of the most
common causes of food poisoning in humans. The characteriza-
tion of large numbers of C. jejuni and C. coli isolates from diverse

sources and locations by multilocus sequence typing (MLST) has
shown that there is genetic differentiation among sequence types
(STs) associated with different hosts (8). Among wild birds, spe-
cific bird species most often harbor their own Campylobacter lin-
eages (8, 9). However, in agricultural animals, although there are
host-associated lineages that are largely restricted to chickens or to
ruminants, some of the most abundant lineages are found at high
frequencies in chickens, cattle, and humans with food poisoning
(8). This multihost lifestyle is curious because of the challenges of
colonizing organisms with such distinct gastrointestinal tracts,
diets, immune systems, and body temperatures.
Here, we investigated the genetic basis of host specificity by an-

alyzing the genome sequences of 192 isolates from cattle, chickens,
clinical samples, and other sources. These included isolates from
single-host lineages and multiple isolates from the host generalist
ST-21 (C. jejuni), ST-45 (C. jejuni), and ST-828 (C. coli) clonal
complexes (Table S1).We used phylogenetic analysis to investigate
host switching and then sought to identify genetic elements that
showed a stronger association with chicken or ruminants than ex-
pected based on the phylogeny. These elements represent candi-
date host adaptation elements.We identified one substantial cattle-
associated region and demonstrate experimentally that it confers
a phenotype (vitamin B5 biosynthesis) likely to aid in colonization
of cattle.

Results
Clonal complexes, identified using MLST data, are groups of
isolates that have identical sequences at most of or all the seven
genotyped loci. Now that whole genomes are becoming available
for large numbers of bacteria, it is possible to establish the ac-
curacy of clonal complex designations in identifying clonal line-
ages. Phylogenetic analysis of C. jejuni genomes supports most of
the clonal complex groupings identified by MLST and provides
new insights into their relationships (Fig. 1A). For example,
isolates from the chicken-associated ST-354, ST-443, ST-353,
and ST-257 complexes (8) each form distinct clades in the tree
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and, together with a handful of other isolates, form a single
chicken-associated supercomplex. Isolates from other chicken-
associated clonal complexes, such as the ST-661 complex, branch
elsewhere on the tree. There are also two cattle-associated line-
ages corresponding to the ST-61 and ST-42 complexes. In addi-
tion, there are lineages with levels of genetic variation comparable
to those of the host-associated groups: specifically, the ST-21
and ST-45 complexes containing a mixture of isolates from cattle,
chickens, and wild birds.
To investigate relatedness within the multihost clonal complexes,

we used ClonalFrame (10), which estimates clonal relationships
allowing for the effect of recombination. Chicken and cattle isolates
are found in multiple places on these trees (Fig. 1B), which implies
relatively recent host switching, although there is one deeper
branch of the ST-45 complex that may be chicken-associated.
To investigate the evolution of host specialization, we devel-

oped a genome-wide association mapping approach that identifies
30-bp DNA sequences (words) associated with colonization of
particular species. The method identifies words that are more
strongly associated with a particular host than would be expected
based on neutral patterns of evolution, given the clonal relation-
ships of the bacteria in the sample and their distribution among
hosts. An attractive feature of this method is that it has the
potential to identify host-adapting evolutionary events, in-
cluding point mutation, homologous recombination, and lateral
gene transfer.
In order for the method to have statistical power to detect

associations, the dataset needs to contain multiple host switches
within it. Furthermore, the presence of multiple isolates from
the same host and clonal background (e.g., the chicken super-
complex) can reduce power because these isolates will share large
amounts of DNA sequence due to clonal inheritance that do not
confer host adaptive traits. We initially applied our method to 29
genome sequences from the ST-45 clonal complex, which are
commonly found in wild and domesticated bird and mammal
species. We included two genomes belonging to the ST-283
complex, which clusters within the ST-45 complex. We chose this
lineage because it met the requirement of multiple host switches,

and we reasoned that the low overall genetic variation within the
lineage should enhance the power to detect adaptive events.
A total of 9,034 30-bp words were identified that were signifi-

cantly associated with either chicken or cattle hosts. Of these,
8,999 mapped to 97 genes (Table S2) in the annotated genome of
isolate NCTC11168 (11) in 10 genome locations (Fig. 2A). The
association signal was replicated by determining the number of
these words in the genomes of 161 C. jejuni and C. coli isolates
from outside the ST-45 clonal complex. The pattern of host as-
sociation varied among regions in the replication (Table S3). The
most concordant signal, where the same pattern of host associa-
tion occurred in the ST-45 complex isolates and in the remaining
genomes, was among 7,307 cattle-associated words that came from
7 adjacent genes within a 5-Kb region (Table 1). We therefore
focused on the evolutionary history of this region to investigate the
events that generated the association signal.
The pattern of gene presence varied for the six genes at the

center of this region. The number of isolates from which they were
completely absent varied from 3 isolates for surE to 78 and 98
isolates for Cj0299 and Cj0295, respectively. The panBCD genes
were absent from between 34 and 39 isolates. Although the genes
showed different patterns of presence and absence, they were all
more common in cattle isolates than in chicken isolates. For ex-
ample, in the ST-45 complex, the panBCD genes had been gained
or lost three times (Fig. 1) and were not present in the two largest
clades of the tree, where cattle isolates were absent. In contrast,
the panBCD genes were present in all the ST-21 complex isolates
examined.
The host association signal was the result of two forms of genetic

variation. First, with the exception of surE, which had fewer host-
associated words, all the genes in the major host-associated region
were more likely to be absent in isolates from chickens. Second,
even where genes were present, different sequences were found in
cattle and chicken isolates. Alleles at these loci tended to show less
homologous sequence variation in cattle isolates compared with
chicken isolates, and as a result, cattle-associated alleles gave the
strongest signals of host association. It is also notable that the

A B

Fig. 1. Genetic structure of C. jejuni isolates from different hosts. (A) Neighbor-joining tree of all isolates based on 1.53-Mb concatenated sequences (165,206
variable sites) of 1,623 loci in the NCTC11168 C. jejuni isolate genome. Host origin is indicated for chickens (yellow), cattle (blue), and wild birds and the
environment (black). Other isolates are primarily from human infections. Clonal complex designations based on MLST are labeled around the tree. Host
associations, based on the 2,764 isolates in the pubMLST database (pubMLST.org), are indicated in the halo using the same color scheme, with generalist
lineages shown in green. (B) Tree of the ST-45 and ST-21 clonal complex isolates only, estimated using ClonalFrame. Allelic variation for six genes in the host-
associated region is shown at the end of each branch. Each shade of red represents a unique allele at that locus. White denotes the absence or truncation of
the gene.
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The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug

resistance in clinical samples, and improvements in global surveillance. Here we show how

de Bruijn graph representation of bacterial diversity can be used to identify species and

resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus

and Mycobacterium tuberculosis in a software package (‘Mykrobe predictor’) that takes raw

sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop.

For S. aureus, the error rates of our method are comparable to gold-standard phenotypic

methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an inde-

pendent validation set, n¼470). For M. tuberculosis, our method predicts resistance with

sensitivity/specificity of 82.6%/98.5% (independent validation set, n¼ 1,609); sensitivity is

lower here, probably because of limited understanding of the underlying genetic mechanisms.

We give evidence that minor alleles improve detection of extremely drug-resistant strains,

and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing

techniques for these purposes.
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SUMMARY 



Genome-wide association studies for bacterial 
pathogens 
◦ Accessibility of  genome sequencing paves the way to discover genetic basis of  diverse traits 

◦ Studies must overcome a range of  pitfalls, notably 
◦  False positives caused by many tests 

◦ Artefactual associations generated by confounders, especially population structure 

◦  Limited power 

◦ Proof  of  principle for bacterial GWAS established by studies of  antimicrobial resistance 

◦ New studies are shedding light on other phenotypes such as components of  virulence 

◦ Knowledge about genotype-phenotype relations will be used in future in the clinic for rapid prediction of  
genotypes including antimicrobial resistance 
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