BACTERIAL ASSOCIATION STUDIES FOR DRUG RESISTANCE & VIRULENCE

Danny Wilson Associate Professor and Sir Henry Dale Fellow Nuffield Department of Medicine, University of Oxford

BACKGROUND GENOME-WIDE ASSOCIATION STUDIES IN BACTERIA

GWAS in bacteria

Example questions

• Do Staphylococcus aureus genomes vary in their propensity to cause invasive disease vs asymptomatic carriage?

• Are there genetic differences in the Clostridium difficile population that explain differential mortality among infections?

• Can we pinpoint the mutations conferring antibiotic resistance in Mycobacterium tuberculosis?

GWAS in bacteria: methods

Can we adapt Genome Wide Association Studies (GWAS) to address challenges particular to bacteria?

O Strong structuring of populations into distinct clusters of highly-related strains

O Weak decay of linkage disequilibrium within the core genome

• Highly mobile accessory genomes

Will Bacterial GWAS have power to fine map the genetic basis of key traits?

1. The Challenge of Bacterial Population Structure

Staphylococcus aureus

Clostridium difficile

Mycobacterium tuberculosis

2. The Challenge of Bacterial Linkage Structure

Physical position on chromosome (base pairs)

 To capture diverse forms of bacterial genetic diversity (SNPs, indels, repeats, gene presence/ absence, mobile elements) we adopt a multipronged approach Null hypothesis: no genetic variant is associated with case vs control status

(31418)										
	Controls (Susceptible)	Cases (Resistant)		Drocor oo wa	abaanaa	of				
'Ser)	326	10	entire genes							
Leu)	3	161		Contr (Suscept	:ols tible)	Cases (Resistant)		Presence vs absence o		
Resistance to ciprofloxacin conferred by S84L substitution in the <i>gyrA</i> gene			Absent (blaZ ⁻)	59		3		short haplotypes (km		
p = 10-	114.9	Present (blaZ ⁺) 0 439 e.g. Resistance to penicillin conferred by the <i>blaZ</i> gene				Controls (Susceptible)	Ca (Resi			
				342						
				$p = 10^{-71.3}$	8		Pro (kr	esent mer ⁺)	0	1
							e.g.	Resis confe AAAA($p = 1$	etance to methicillin erred by the <i>mecA</i> gene that CAAGTTATAAAATCGATGGTAA .0 ^{-109.2}	contains th AGGTT

gle nucleotide polymorphisms (SNPs)

Fusidic acid resistance in Staphylococcus aureus

Protein synthesis requires elongation factor G (EF-G) to proceed normally

> Accessory genes *fusB* and *fusC* encode chaperones that bind to EF-G and destablize binding of FA. This promotes dissociation of FA and allows protein synthesis to proceed.

Fusidic acid (FA) binds to EF-G, locking it to the ribosome and stalling protein synthesis. Mutations in *fusA*, the gene encoding EF-G, prevent FA binding, allowing protein synthesis to proceed.

Credit: Georgina Cox

ADDRESSING THE CHALLENGES OF BACTERIAL GWAS

Controlling for population stratification

°This phrase covers the following artefacts

- Linkage disequilibrium with genuine causal variants that are population-stratified
- Uncontrolled environmental variables that are population-stratified
- Population-stratified differences in sampling
- Sensitivity to over-sampling close relatives (i.e. same genotypes and environments)

What can go wrong in GWAS?

	Type I errors	Type II errors
0. Grand null No association	Find any variant	n/a
1. Simple alternative One causal variant	Find the wrong variant	Miss the right variant
2. Complex null Confounding	Find any variant	n/a
3. Complex alternative Confounding plus one interesting variant	Find the wrong variant	Miss the right variant

In the eukaryotic setting, where LD is localized and block-like, determination of whether a GWAS hit is right or wrong is often considered at the level of the LD block, rather than individual variants. For bacteria, where LD is not block-like, this does not work.

Control of population structure

° Genomic control

° Directly adjust the p-values so the vast majority are non-significant

° Subpopulations

° Expect individuals in the same subpopulation to have phenotypes that are more similar

° Principal components analysis (PCA)

° Expect individuals with similar principal components to have phenotypes that are more similar

° Linear mixed models

° Expect individuals that are closely related to have phenotypes that are more similar

BACTERIAL GWAS IN PRACTICE

Fusidic acid resistance χ^2 test

 $-\log_{10} p \chi^2 \text{ test } -\log_{10} p$

Leading principal components correspond to major lineages

True phenotype: Sensitive Resistant

LMM predicted phenotype:

- Sensitive
- Resistant

Variant by Principal Component

Antibiotic	# R	# S	Resistance mechanism	SNP / gene LMM	Kmer LMM	Earle et al 2016 Nature Microbiology
oli						= 13am Ct at 2010 I value Ivillouology
Ampicillin	189	52	β-lactamase genes <i>blaTEM</i>			Resistance determined by gene
Cefazolin	62	179	β-lactamase genes <i>blaCTX-M</i>			nresence
Cefuroxime	81	160	β-lactamase genes <i>blaCTX-M</i>			Resistance determined by SNPs
Ceftriaxone	55	186	β-lactamase genes <i>blaCTX-M</i>			
Ciprofloxacin	91	150	SNPs in <i>gyrA</i> ^a , <i>gyrB</i> , <i>parC</i> ^b or <i>parE</i> or presence of PMQR			Resistance determined by gene
Gentamicin	48	193	AAC (<u>aac(3)-II)</u> , ANT, APH or rRNA methylase			nrosonco or SNDs or both
Tobramycin	67	174	AAC (<u>aac(3)-II</u>), ANT, APH or rRNA methylase			presence of SNPS of both
neumoniae						
Cefazolin	38	138	β-lactamase genes <i>blaCTX-M</i>			
Cefuroxime	46	130	β-lactamase genes <i>blaCTX-M</i>			mechanism
Ceftriaxone	35	141	β-lactamase genes <i>blaCTX-M</i>			meenamsm
Ciprofloxacin	34	142	SNPs in <i>gyrA</i> , <i>gyrB</i> , <i>parC</i> or <i>parE</i> or presence of PMQR (<i>anr-B1</i> ^a , <i>anr-B19</i> ^b)			Most significant variant was in physical
Gentamicin	31	145	AAC (<u>acc(3)-II</u>), ANT, APH or rRNA methylase			linkage (PL) with the expected mechanism
Tobramycin	36	140	AAC (<u>acc(3)-II</u>), ANT, APH or rRNA methylase			inikage (FL) with the expected mechanisi
uberculosis						
Ethambutol	41	1589	embB			Most significant variant was not the
Isoniazid	239	1470	<u>katG</u> , mabA or fabG1			
Pyrazinamide	45	1662	pncA			expected mechanism or in PL with the
Rifampin	86	1487	rpoB			expected mechanism
ureus						
Ciprofloxacin	242	750	<u>grlA</u> or gyrA			
Erythromycin	216	776	ermA, <u>ermC</u> , ermT or msrA			
Fusidic acid	84	908	SNPs in <i>fusA</i> ^a or presence of <i>fusB</i> or <i>far</i> ^b			
Gentamicin	11	981	aacA/aphD			
Penicillin	824	168	blaZ			Genuine resistance-conferring
Methicillin	216	776	mecA			variants were detected in all but
Tetracycline	46	946	tetK, tetL or tetM			ono study
Trimethoprim	15	308	SNPs in dfrB, presence of dfrG or dfrA			one study
Rifampicin	8	984	rpoB			

Testing the ability of GWAS to detect genes and genetic variants underlying antimicrobial resistance

Klebsiella pneumoniae (n = 176)

GWAS simulations

CO

CO

GWAS for toxicity

arch

edicting the virulence of MRSA from its genome juence

sem Laabei,^{1,11} Mario Recker,^{2,11} Justine K. Rudkin,¹ Mona Aldeljawi,¹ nep Gulay,³ Tim J. Sloan,⁴ Paul Williams,⁴ Jennifer L. Endres,⁵ Kenneth W. Bayles,⁵ D. Fey,⁵ Vijaya Kumar Yajjala,⁵ Todd Widhelm,⁵ Erica Hawkins,¹ Katie Lewis,¹ Parfett,¹ Lucy Scowen,¹ Sharon J. Peacock,⁶ Matthew Holden,⁷ Daniel Wilson,⁸ othy D. Read,⁹ Jean van den Elsen,¹ Nicholas K. Priest,¹ Edward J. Feil,¹ ence D. Hurst,¹ Elisabet Josefsson,¹⁰ and Ruth C. Massey^{1,12}

> genes, and in intergenic regions. Two genes previously shown to affect the expression of toxins contained significantly associated SNPs: mecA (Rudkin et al. 2012) and agrC (Ji et al. 1995; Novick and Geisinger 2008), which provided some proof of principle for the validity of our approach. Mobile genetic elements, such as the S. aureus pathogenicity Island I (SaPI1) (Ruzin et al. 2001) and the betahaemolytic converting phage (Bae et al. 2006), also contained several associated genetic changes, implying that variability in many diverse regions of the genome contributes to the toxicity of a given isolate. Some of the polymorphisms appeared

GWAS for host association

Genome-wide association study identifies vitamin B₅ biosynthesis as a host specificity factor in *Campylobacter*

Samuel K. Sheppard^{a,b,1}, Xavier Didelot^c, Guillaume Meric^b, Alicia Torralbo^d, Keith A. Jolley^a, David J. Kelly^e, Stephen D. Bentley^{f,g}, Martin C. J. Maiden^a, Julian Parkhill^f, and Daniel Falush^h

^aDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; ^bInstitute of Life Scienci Swansea SA2 8PP, United Kingdom; ^cSchool of Public Health, St. Mary's Campus, Imperial College London, I of Animal Health, University of Cordoba, 14071 Cordoba, Spain; ^eDepartment of Molecular Biology and B S10 2TN, United Kingdom; ^fWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0SP, United Kingdom; and Anthropology, 04103 Leipzig, Germany

Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved June 3, 2013 (received f

Fig. 1. Genetic structure of *C. jejuni isolates* from different hosts. (A) Neighbor-joining tree of all isolates based on 1.53-Mb concatenated sequences (variable sites) of 1,623 loci in the NCTC11168 *C. jejuni* isolate genome. Host origin is indicated for chickens (yellow), cattle (blue), and wild birds a environment (black). Other isolates are primarily from human infections. Clonal complex designations based on MLST are labeled around the tre associations, based on the 2,764 isolates in the pubMLST database (pubMLST.org), are indicated in the halo using the same color scheme, with ge lineages shown in green. (*B*) Tree of the ST-45 and ST-21 clonal complex isolates only, estimated using ClonalFrame. Allelic variation for six genes in th associated region is shown at the end of each branch. Each shade of red represents a unique allele at that locus. White denotes the absence or trunca the gene.

Using GWAS results for predicting resistance

Figure 2 | Species and susceptibility predictions for S. aureus. (a) Species classification results on species validation set St

C

CO

Genome-wide association studies for bacterial pathogens

- ° Accessibility of genome sequencing paves the way to discover genetic basis of diverse traits
- ° Studies must overcome a range of pitfalls, notably
 - ° False positives caused by many tests
 - ° Artefactual associations generated by confounders, especially population structure
 - ° Limited power
- ° Proof of principle for bacterial GWAS established by studies of antimicrobial resistance
- ° New studies are shedding light on other phenotypes such as components of virulence
- Knowledge about genotype-phenotype relations will be used in future in the clinic for rapid prediction of genotypes including antimicrobial resistance

Acknowledgments

Analysis and development Sarah Earle Jessie Wu Jane Charlesworth

Microbiology

Nicole Stoesser Claire Gordon Tim Walker Katie Hopkins

Statistical Expertise

Chris Spencer Zam Igbal David Clifton Gil McVean Sarah Walker

Clinical Collaborators Neil Woodford

Grace Smith Nazir Ismail Martin Llewelvn **Tim Peto & Derrick Crook**

Bacterial GWAS Earle et al (2016) Nature Microbiology 1: 16041 Laabei et al (2014) Genome Research 24: 839

Evolution during infection Laabei et al (2015) PLoS Biology 13: e1002229 Young et al (2012) PNAS 109: 4550-4555

Evolution of horizontal gene transfer Everitt et al (2014) Nature Communications 5: 3956

Reviews

Didelot et al (2016) Nature Reviews Microbiology 14: 150 Wilson (2012) PLoS Pathogens 8: e1002874

> **Contact** daniel.wilson@ndm.ox.ac.uk Web www.daniel wilson.me.uk www.virulogenomics.com

Funding

UKCRC Modernising Medical Microbiology

wellcometrust

Oxford Biomedical Research Centre UNIVERSITY OF

