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GWAS 1n bacteria

Example questions

O Do Staphylococcus aureus genomes vary in their propensity to
cause invasive disease vs asymptomatic carriage?

O Are there genetic differences in the Clostridium difficile population
that explain differential mortality among infections?

O Can we pinpoint the mutations conferring antibiotic resistance in
Mycobacterium tuberculosis?




GWAS 1n bacteria: methods

Can we adapt Genome Wide Association Studies (GWAS) to address
challenges particular to bacteria?

O Strong structuring of populations into distinct clusters of highly-related
strains

O Weak decay of linkage disequilibrium within the core genome
O Highly mobile accessory genomes

Will Bacterial GWAS have power to fine map the genetic basis of key
traits?




1. The Challenge of Bacterial Population Structure
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1. The Challenge ot Bacterial Population Structure
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O Ciprofloxacin Resistant isolates -

Ciprofloxacin Susceptible isolates
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2. The Challenge of Bacterial Linkage Structure
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Bacterial GWAS pipeline

Bacterial Genomes and Traits
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Single Nucleotide Gene Presence/ Kmer Presence/
Polymorphism Absence Absence
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° To capture diverse forms of bacterial genetic diversity (SNPs, indels, repeats, gene presence/

absence, mobile elements) we adopt a multipronged approach



Null hypothesis: 7o genetic variant is associated with case vs control status

gle nucleotide polymorphisms

(SNPs)
Controls Cases
(Susceptible) (Resistant)
/Set) 326 10
/Leu) 3 161

Resistance to ciprofloxacin
conferred by S84L substitution in the gy~ gene
p= 10-114.9

Presence vs absence of
entire genes

Controls Cases
(Susceptible) (Resistant)
Absent
(blaZ) > s
Present
(blaZ*) 0 439

e.g

Resistance to penicillin
conferred by the blaZ gene
p — 10—71.3

Presence vs absence of
short haplotypes (kmers)

Controls
(Susceptible)
Absent
(lemer) 342
Present
(kmer™) 0 !

e.g

Resistance to methicillin

conferred by the 7ec gene that contains tl
AAAACAAGTTATAAAATCGATGGTAAAGGTT

P — 10—109.2




Fusidic acid resistance in Staphylococcus aureus

A polypeptide -

mRNA

Protein synthesis requires

clongation factor G (EF-G) to Fusidic acid (FA) binds to EF-G,
proceed normally locking it to the ribosome and
Accessory genes fusB and fusC stalling protein synthesis.
encode chaperones that bind to Mutations in fusA, the gene
EF-G and destablize binding of encoding EF-G, prevent FA
FA. This promotes dissociation binding, allowing protein
of FA and allows protein synthesis to proceed.
synthesis to proceed.

Credit: Georgina Cox
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ontrolling tor population stratification

°This phrase covers the following artefacts

Linkage disequilibrium with genuine causal variants that are population-stratified

Uncontrolled environmental variables that are population-stratified

Population-stratified differences in sampling

Sensitivity to over-sampling close relatives (i.e. same genotypes and environments)




Vhat can go wrong 1n GWAS?

Type I errors Type II errors
0. Grand null Find any variant n/a
No association
1. Simple alternative Find the wrong variant Miss the right variant
One causal variant
2. Complex null Find any variant n/a
Confounding
3. Complex alternative | Find the wrong variant Miss the right variant
Confounding plus
one interesting variant

In the eukaryotic setting, where LD is localized and block-like, determination of whether a GWAS hit is
right or wrong 1s often considered at the level of the LD block, rather than individual variants.
For bacteria, where LD is not block-like, this does not wotk.




Control of population structure

° (zenomic control

° Directly adjust the p-values so the vast majority are non-significant

° Subpopulations

° Expect individuals in the same subpopulation to have phenotypes that are more similar

° Principal components analysis (PCA)

° Expect individuals with similar principal components to have phenotypes that are more similar

° LLinear mixed models

° Expect individuals that are closely related to have phenotypes that are more similar
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Fusidic acid resistance x? test

fusC and SCC genes
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Linear Mixed Model (LMM) -log,, p

Wh_ere did the signal of association at fusC go?

-

fusA

-log,, p x? test -log,, p

Controlling for
population structure
reduced significance
of fusC kmers from p
<10122to

p<103

Kmers capturing fusA
increased from p <
10122 to

p<103




Leading principal components correspond to major lineages

True phenotype:

Sensitive
Resistant

LMM predicted phenotype:
O Sensitive
Resistant
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Sensitive

Projection of individual
onto PC6

True phenotype:

Sensitive
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LMM predicted phenotype:
O Sensitive
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e Projection of individual
onto PC9

True phenotype:
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Resistant

LMM predicted phenotype:
O Sensitive
Resistant
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Fusidic acid resistance in S. aureus

f\x\a‘g\u i J
S 4
’%\

Eal oy ?%?g%
2 ”Mw')';",,{""‘ 2/;\ CG’? r ’ﬂﬂ % 62

o
1IN

25

1 27 12 24 50 26 79 47 60 21 11 62 40 10 654

PrlnC|paI Component



40 60 80 100 120

Linear Mixed Model (LMM) -log,, p

20

Fusidic acid resistanc: Manhattan plot

fusA gene

fusC and SCC genes

[

Position in reference genome MSSA476 (Mb)

Unmapped




Linear Mixed Model (LMM) -log,, p
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fusA gene

This provides another “dimension” for choosing variants for
functional follow-up because it allows prioritization of groups of
variants that are individually non-significant (judging by their locus
effects), but collectively highly significant (from their lineage
effects).

However, there is a trade-off because lineage effects are more
susceptible to confounding.
7
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Variant by Principal Component




Bacterial GWAS pipeline

Bacterial Genomes and Traits
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Single Nucleotide Gene Presence/ Kmer Presence/
Polymorphism Absence Absence
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Control for Population Structure
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Locus effects Lineage effects
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Correct for Multiple Testing
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Shortlisted Lineages

Shortlisted Loci Shortlisted Loci by Lineage




Antibiotic #R #S Resistance mechanism SNP /gene LMM Kmer LMM
oli
Ampicillin 189 52 B-lactamase genes
blaTEM
Cefazolin 62 179 B-lactamase genes
blaCTX-M
Cefuroxime 81 160 B-lactamase genes
blaCTX-M
Ceftriaxone 55 186 B-lactamase genes
blaCTX-M
Ciprofloxacin 91 150 SNPs in gyrA®, gyrB, paer or parE or
presence of PMQR
Gentamicin 48 193 AAC (aac(3)-1), ANT, APH or rRNA
methylase
Tobramycin 67 174 AAC (aac(3)-1), ANT, APH or rRNA
methylase
neumoniae
Cefazolin 38 138 B-lactamase genes
blaCTX-M
Cefuroxime 46 130 B-lactamase genes
blaCTX-M
Ceftriaxone 35 141 B-lactamase genes
blaCTX-M
Ciprofloxacin 34 142 SNPs in gyrA, gyrB, parC or parE or
presence of PMQR (gnr-B1?, qnr-B19°)
Gentamicin 31 145 AAC (acc(3)-1), ANT, APH or rRNA
methylase
Tobramycin 36 140 AAC (acc(3)-1), ANT, APH or rRNA
methylase
uberculosis
Ethambutol 41 1589 embB
Isoniazid 239 1470 katG, mabA or fabG1
Pyrazinamide 45 1662 pncA
Rifampin 86 1487 rpoB
ureus
Ciprofloxacin 242 750 griA or gyrA
Erythromycin 216 776 ermA, ermC, ermT or msrA
Fusidic acid 84 908 SNPs in fusA® or presence of fusB or
far’
Gentamicin 11 981 aacAlaphD
Penicillin 824 168 blaz
Methicillin 216 776 mecA
Tetracycline 46 946 tetK, tetl or tetM
Trimethoprim 15 308 SNPs in dfrB, presence of dfrG or dfrA
Rifampicin 8 984 rpoB

Earle et al 2016 Nature Microbiology
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Resistance determined by gene

presence
Resistance determined by SNPs

Resistance determined by gene
presence or SNPs or both

Most significant variant was the expected
mechanism

Most significant variant was in physical
linkage (PL) with the expected mechanisn

Most significant variant was not the
expected mechanism or in PL with the
expected mechanism

Genuine resistance-conferring
variants were detected in all but
one study




Testing the ability of GWAS to detect genes and genetic variants

underlying antimicrobial resistance
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GWAS simulations
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GWAS for toxicity

dicting the virulence of MRSA from its genome - | Wﬂﬂm Tﬂﬂﬂ Hﬂﬂﬂmm
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GWAS for host association

Genome-wide association study identifies vitamin Bs

biosynthesis as a host specificity fact
in Campylobacter

Samuel K. Sheppard®®, Xavier Didelot, Guillaume Meric®, Alicia Torralbo?, Keith
Stephen D. Bentley™9, Martin C. J. Maiden®, Julian Parkhill’, and Daniel Falush"

2Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; PInstitute of Life Scienc
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Fig. 1. Genetic structure of C. jejuni isolates from different hosts. (A) Neighbor-joining tree of all isolates based on 1.53-Mb concatenated sequences (
variable sites) of 1,623 loci in the NCTC11168 C. jejuni isolate genome. Host origin is indicated for chickens (yellow), cattle (blue), and wild birds :
environment (black). Other isolates are primarily from human infections. Clonal complex designations based on MLST are labeled around the tre
associations, based on the 2,764 isolates in the pubMLST database (pubMLST.org), are indicated in the halo using the same color scheme, with ge
lineages shown in green. (B) Tree of the ST-45 and ST-21 clonal complex isolates only, estimated using ClonalFrame. Allelic variation for six genes in t
associated region is shown at the end of each branch. Each shade of red represents a unique allele at that locus. White denotes the absence or trunc:
the gene.




Using GWAS results for predicting resistance
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Figure 2 | Species and susceptibility predictions for S. aureus. (a) Species classification results on species validation set St.
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Genome-wide association studies for bacterial

pathogens

° Accessibility of genome sequencing paves the way to discover genetic basis of diverse traits

° Studies must overcome a range of pitfalls, notably

° False positives caused by many tests

° Artefactual associations generated by confounders, especially population structure

° Limited power
° Proof of principle for bacterial GWAS established by studies of antimicrobial resistance
° New studies are shedding light on other phenotypes such as components of virulence

> Knowledge about genotype-phenotype relations will be used in future in the clinic for rapid prediction of
genotypes including antimicrobial resistance
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