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Abstract 

Patterns of polymorphism and divergence across multiple species are highly informative 

about the selective forces that worked to shape those populations. Through an analysis of 

polymorphism within and divergence between species we can hope to learn about the 

distribution of selection coefficients across the genome, the changes in adaptive 

landscape that occur over time, and the specific sites involved in key adaptations that 

distinguish modern day species. Yet the cross-fertilization of ideas from population 

genetics and phylogenetics in this area has been limited. Methods designed to detect fine-

scale variation in selection pressures such as codeml and omegaMap exploit respectively 

divergence or polymorphism data alone. The Poisson random field approach utilizes both, 

but under a restrictive set of modeling conditions. Here we propose a combined 

population genetics and phylogenetics approach that brings together the advantages of all 

these techniques. To demonstrate its flexibility, and connection to existing methods, we 

illustrate our approach with example analyses of human toll-like receptors, the 

meningococcal porB3 antigen, and CTL escape and reversion in an HLA-discordant 

HIV-1 transmission pair. 

Author summary 

Introduction 

 The ultimate questions in biology [1] concern the role of adaptation versus 

alternative, non-adaptive forces [2] in shaping the diversity of life within and between 

species. Consequently, detecting the genetic signature of natural selection in patterns of 
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polymorphism and divergence across multiple species has become a major goal of 

evolutionary biology [3-5]. From analyses of polymorphism within and divergence 

between species, we can hope to learn about the distribution of selection coefficients 

acting on the genome [6], changes in the adaptive landscape over time [7], and the 

specific sites in the genome that underlie adaptive phenotypes [8]. 

 A variety of molecular patterns are predicted by natural selection. Within species, 

selection may skew allele frequencies towards favored forms [9], propel advantageous 

derived mutants to high frequency [10], drive population differentiation [11], and leave 

behind extended regions of linkage disequilibrium [12]. Between species, selection may 

conserve favorable genotypes over long periods of evolutionary time [13], or accelerate 

the substitution of novel forms in response to disruptive fitness regimes [14]. 

Traditionally, in protein-coding regions, the rate of substitution of synonymous mutations 

has been used as a neutral yardstick against which to compare the rate of amino acid-

changing substitutions [15], but this approach has been broadened to include comparisons 

with flanking untranslated regions, introns, putative regulatory regions and non-genic 

regions [16, 17]. 

 By and large, the models used to understand how selection influences gene 

frequencies in polymorphism data can be traced back to the diffusion theory of 

population genetics pioneers such as Sewall Wright [18] and Motoo Kimura [19]. 

Diffusion theory [20] underpins a range of neutrality tests [9, 10] and methods for 

estimating selection coefficients from allele frequency spectra, with or without ancestral 

information [21, 22], but its mathematical elegance owes much to simplifying conditions 

such as biallelic loci (i.e. no more than two alleles co-segregate at a locus), infinite sites 
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(i.e. no repeat mutation, back mutation, or saturation of sites), or parent-independent 

mutation (in which the rate of mutation to an allele is independent of the mutating allele). 

As a result these methods often require compromises when analyzing data, such as 

pooling alleles or discarding sites where there are more than two alleles, and 

reconstructing ancestral states by parsimony, provided the ancestral allele can be 

unambiguously identified from an outgroup. 

 The point of departure for analyses of divergence data is usually the 

reconstruction of a tree relating the molecular sequences in question. The estimation of 

substitution rates along the branches of the tree allows the detection of regions of 

accelerated evolution [23], or an excess rate of non-synonymous relative to synonymous 

substitution, usually expressed as the DN/DS ratio [24] at particular sites [25], along 

particular branches [26], or both [27]. Modern likelihood-based phylogenetic methods 

[28, 29] are based on Markov chain models [20]. They allow for the joint estimation of 

the tree and a sophisticated substitution model that may incorporate multiple alleles 

(usually 4 nucleotides, 20 amino acids or the 61 non stop codons), highly parent-

dependent rates (e.g. different rates for synonymous versus non-synonymous 

substitutions) and probabilistic inference of ancestral states [30]. However, the 

application of phylogenetic methods directly to polymorphism data can have pathological 

consequences. Recombination between sites within a population can resemble repeat 

mutation when rigidly imposing a tree structure [31], and this in turn may cause a false 

signal of adaptive evolution [32, 33]. Population samples are likely to contain weakly 

deleterious polymorphisms that are segregating in the population but ultimately destined 

for loss. This can give the misleading impression of a relaxation of selective constraint 
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near the tips of the tree [34]. These issues are especially pertinent in the context of the 

growth of high-throughput technologies aimed at deeply sequencing populations [5]. 

 Polymorphism and divergence offer complementary angles on the evolutionary 

process. The snapshots afforded by polymorphism data are especially informative about 

deleterious mutation because mildly advantageous and deleterious variants alike can 

segregate within populations, albeit with different expected frequencies. Over time, 

selection acts on these differences so that substitutions are enriched for advantageous 

mutations, and impoverished of deleterious mutations. The McDonald-Kreitman (MK) 

test [35] exploits this contrast to detect adaptation where divergence or polymorphism 

data alone might not, owing to variation in selection coefficients within a gene. A 

preponderance of deleterious mutants might limit the DN/DS ratio to a value much less 

than unity, and thereby swamp the signal of adaptive substitution at other sites. Yet an 

excess DN/DS ratio compared to PN/PS, its population analog, could reveal a surplus of 

non-synonymous substitution compared to polymorphism, indicative of adaptive change. 

 Several model-based interpretations of the MK test have been proposed [36-38], 

of which the Poisson random field (PRF) approach is most widely used [36, 39, 40]. 

Except for a class of unviable mutants, PRF does not model variation in selection 

coefficients within a gene. Arguably, this sets a high threshold for detecting adaptation, 

as the net effect of selection within the gene must be adaptive change, whereas one might 

conservatively expect the evolution of a protein-coding gene often to involve a small 

number of adaptive changes against a backdrop of selective constraint. Perhaps this 

explains why scans of the human genome have found fewer genes under adaptive change 

than expected from the false positive rate [40, 41]. Methods to detect fine-scale variation 
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in selection pressures such as codeml [25, 28] and omegaMap [42] exist but exploit 

respectively divergence and polymorphism data alone. The mathematical conveniences of 

diffusion theory, particularly the infinite alleles model, make PRF simple and attractive to 

use. But they also make it difficult to extend to scenarios requiring multiple alleles, 

multiple species, sophisticated mutation models, probabilistic inference of ancestral 

states, variable selection pressures and localizing the signal of selection. 

 The aim of this paper is to overcome these limitations by combining population 

genetic and phylogenetic approaches to the analysis of polymorphism and divergence. 

We propose a likelihood-based framework that integrates the underlying diffusion and 

Markov chain models to facilitate the analysis of natural selection in multiple 

populations, using multiallelic, parent-dependent models of mutation with variable 

selection pressure. We illustrate the principles of the approach, and its connection to PRF, 

through an example biallelic analysis of human toll-like receptors. We use Wright-Fisher 

simulations to test the multiallelic parent-dependent model by employing the idea of 

calibration. Through an analysis of polymorphism data in the meningococcal porB3 

antigen locus, we characterize intragenic variation in selection pressure, and compare our 

results to those of omegaMap. Finally, we perform an analysis of polymorphism and 

divergence data from multiple HIV-1 populations sampled from a transmission pair, and 

identify specific sites subject to adaptive change in response to the host genotype. 

Results 

 Population genetics and phylogenetics are concerned with the same evolutionary 

processes, but at different timescales. The diffusion processes of population genetics 

consider changes in population allele frequency over time (Figure 1A), while the Markov 
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chains of phylogenetics consider the succession of allelic substitutions over time. The 

latter may be viewed as a summary or simplification of the former (Figure 1B), 

appropriate at longer timescales where the fixation and loss of novel mutations occurs 

essentially instantaneously. Here we attempt to reconcile the approaches, because the 

patterns of polymorphism that represent snapshots of the evolutionary process, and which 

we are able to observe directly, can complement our understanding of selection gleaned 

from patterns of divergence between species. 

 Working with diffusion processes is difficult because they are mathematically 

unwieldy [20]. Models of any practical value generally yield a probability distribution for 

the frequency of alleles in a population at equilibrium. Such results come at a cost, 

usually requiring simplifying assumptions such as constant population size, no population 

structure and parent-independent mutation [18]. We inherit these assumptions, but return 

to the issue of parent-independent mutation later. A stationary distribution of gene 

frequencies is useful for the analysis of polymorphism from a single population. To make 

it useful for the analysis of multiple populations, we have to introduce a connection to the 

phylogenetic model. 

 At a snapshot in time, the phylogenetic model reports the ancestral allele in the 

population. Our approach hinges on modifying the stationary distribution of allele 

frequencies in the population so that it depends on the ancestral allele (Figure 1C). 

Intuitively, one expects the ancestral allele to be at high frequency, quite possibly fixed, 

in the population, and the idea is to modify the stationary distribution to reflect this. We 

call this modification to the stationary distribution phylogenetic conditioning because by 
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conditioning on the ancestral allele, which we do by Bayes rule (see Methods), we 

introduce a phylogenetic dependency to the model of population allele frequencies. 

 In the analysis of polymorphism data, we cannot know for certain the identity of 

the ancestral allele in a population. Thus for statistical inference, which requires 

calculation of the likelihood of the observed data, we must sum over all possible ancestral 

alleles, not just at the internal nodes in the phylogeny relating our populations, but also at 

the tips of the phylogeny (Figure 1D). This is an extension to the usual pruning algorithm 

[30], which we call population pruning (see Table 1 for a glossary of terms). Population 

pruning is an important conceptual development because it implies that sequences 

sampled from extant (or indeed extinct) species should not be analyzed directly by the 

phylogenetic model, even in samples of size one, because of the inevitable presence of 

derived alleles in those sequences. This may help explain the apparent relaxation of 

selective constraint often seen at the tips of a phylogeny [34]. 

Biallelic Model Applied to Toll-Like Receptors 

 As a proof-of-principle, or sanity check, and to demonstrate the close connection 

to the Poisson random field (PRF) approach [36, 39], our first application is to the 

analysis of data in the form of McDonald-Kreitman (MK) tables [35]. The MK table is a 

two-by-two contingency table that classifies, for a pair of species, the number of sites in a 

gene that are synonymous (S) or non-synonymous (N), polymorphic (P) or divergent (D). 

The MK test is a test of the null hypothesis, under the neutral theory [15], that the odds 

ratio (DN PS)/(DS PN) equals one. A DN/DS significantly greater than PN/PS is 

indicative of adaptive evolution between the two species. 
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 PRF offers a parametric interpretation of the MK table based on diffusion theory 

that we parallel using our approach. In the infinite sites setting of the PRF, non-

synonymous mutations with selective advantage s arise at rate µR per locus per 

generation. Synonymous mutations, assumed neutral, arise at rate µS. Because of the 

nuances of population genetics, the parameters estimable from the data are the 

population-scaled counterparts !
S
= 2PN

e
µ
S

, !
R
= 2PN

e
µ
R

 and ! = 2PN
e
s , where P is 

the ploidy and Ne the effective population size; 1/PNe can be thought of as the strength of 

genetic drift. The fourth parameter is τ, the divergence time for the two species, measured 

in units of PNe generations. 

 In our finite-sites version we assume a rate of back mutation equal to the forward 

mutation rate. We arbitrarily label the two alleles at a locus 1 and 2. To assign selection 

coefficients to alleles, we mirror the PRF approach by assuming that the derived mutation 

has population-scaled selective advantage γ, regardless of which allele that may be. Thus, 

when γ > 0, selection favors new phenotypes: this is known as positive selection. 

Conversely, when γ < 0, selection favors the incumbent phenotype: this is negative 

selection. Measuring fitness relative to the ancestral allele implies that were a back 

mutation to arise, it would have advantage γ. In other words, the model implies that the 

selection regime changes upon substitution, and this is a property shared by the 

phylogenetic DN/DS model of Nielsen and Yang [25]. We call this recurrent directional 

selection, and while it is convenient for inference, in the Discussion we return to a 

consideration of its merits and demerits. 
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 To evaluate the performance of our method and compare it to PRF, we estimated 

by maximum likelihood the evolutionary parameters for a family of genes known as toll-

like receptors [43]. In primates, toll-like receptors (TLRs) are involved in innate 

immunity to intra- and extra-cellular pathogens. TLRs 3, 7, 8 and 9 confer immunity to 

viruses by recognizing foreign, intracellular nucleic acids. The remaining six TLRs 

confer resistance to bacteria and macroparasites through recognition of a variety of 

foreign extracellular molecules. 

 Barreiro and colleagues sequenced all ten TLRs in several hundred humans and 

constructed MK tables using the chimpanzee reference sequence. Interestingly, they 

found that the four TLRs involved in viral recognition exhibited patterns of positive 

selection while the remaining six exhibited patterns of negative selection, which may 

reflect the different selection pressures exerted by viral versus cellular pathogens on the 

host immune system [43]. In a reanalysis of their data (Table 2), we confirm this 

observation, obtaining very similar estimates of the synonymous and non-synonymous 

mutation rates, divergence times and selection coefficients for all ten genes by PRF and 

our method. This is reassuring, and indeed expected since PRF can be considered a 

special case of our method when the mutation rate is very low. 

A Multiallelic Hot-or-Not Model 

 Summarizing patterns of polymorphism and divergence using MK tables is 

convenient for a pair of species when diversity is relatively low. But for multiple species 

or data that exhibit moderate to high diversity, multiple nucleotides might be 

polymorphic, divergent or both at the same position. When multiple nucleotide positions 

within the same codon are coincidentally polymorphic or divergent, it becomes difficult 
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to classify sites as synonymous or non-synonymous. Furthermore, polymorphism at the 

same site in multiple species, or multiple substitutions at the same position, make it 

difficult to infer ancestral states by parsimony. In these situations it would be preferable 

to analyze the molecular sequences directly, using a probabilistic model, rather than to 

summarize them. 

 In addition, a codon-based sitewise model of molecular evolution has advantages 

from the modeling perspective. The relationship between any pair of codons can be 

defined unambiguously as synonymous or non-synonymous. For explicit finite-sites 

models, standard phylogenetic tools are available for dealing with uncertainty in ancestral 

states, branch lengths, tree topology and evolutionary rates [28, 29, 30]. And it is well 

understood how to model variation in evolutionary rates between sites, or along specific 

branches [25, 26], allowing us to localize the signal of selection. 

 To enjoy these advantages, we constructed a multiallelic model of codon 

evolution. Our starting point was the stationary distribution of allele frequencies under 

Wright's [18] multiallelic diffusion process with parent-independent mutation and 

selection (PIMS) that we would modify using phylogenetic conditioning. Wright allows 

for quite general models of selection. However, to be practically useful the parameters 

must be estimable from data, and calculation of the likelihood must be computationally 

efficient. With these considerations in mind, we developed a hot-or-not model in which 

there are just two fitness classes. Measuring fitness relative to the ancestral state, we 

define γ as the population-scaled selective advantage of codons encoding an amino acid 

different to that encoded by the ancestral codon. As in the biallelic example, this is a 

recurrent selection model so when γ > 0, amino acids different to the ancestor are favored 
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(positive selection), and when γ < 0, the ancestral amino acid type is favored (negative 

selection). 

 In a codon-based framework, a parent-independent mutation model is of dubious 

provenance, because one expects the rate of mutation to be much higher to codons that 

differ by one, rather than two or three nucleotides. To address this we developed an 

approximation to parent-dependent mutation described in the Methods. In summary, we 

exploit the method of phylogenetic conditioning to force the mutation rate to depend on 

the identity of the ancestral allele. Intuitively, the ancestral allele is likely to be the most 

frequent, so the majority of mutations arise on the ancestral background. Therefore we 

expect the approximation to perform well. 

 We used this approximation to parent-dependent mutation to implement a codon-

based version of Hasegawa, Kishino and Yano's model (HKY85 [44]) in which π is the 

stationary frequency of codon usage and κ is the rate of transitions relative to 

transversions. Within a codon, only one nucleotide is allowed to mutate at a time, and the 

expected population-scaled mutation rate is θ. Under this HKY85 codon model with 

recurrent selection, the phylogenetic substitution rate is identical to that of Nielsen and 

Yang (NY98 [25]), where their parameter representing the DN/DS ratio, ω, equals 

! 1" e
"!( ) . However, in the next section we examine why our approach is not 

equivalent to applying the phylogenetic NY98 model directly to polymorphism data. 

Testing the Method by Simulation 

 Owing to a number of approximations made in the construction of the model, we 

wished to test the performance of the likelihood in an inference setting. Two scenarios 
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were of particular interest: in the first, we wished to assess the performance of parameter 

estimation from polymorphism data alone, when the ancestor is known at each site. This 

serves to test the method of phylogenetic conditioning, and the approximate model of 

parent-dependent mutation. In the second, we wished to assess the performance of 

parameter estimation from polymorphism data when there is some divergence 

information. In this scenario, the ancestor is assumed known 10 PNe generations prior to 

sampling. This serves as an additional test of the phylogenetic model and the population 

pruning algorithm. 

 We used as the basis of our test the Bayesian idea of calibration [45]. In 

simulations, if our model works correctly, then the 95% credible interval (CI) for a 

parameter should include the truth 95% of the time. Thus we performed 200 Wright-

Fisher simulations of 30 sequences length 250 codons under each scenario, drawing the 

evolutionary parameters θ, κ and γ from a prior distribution (see Methods). For each 

scenario, we expected that in 190 simulations the 95% CI would include the truth, with an 

acceptable range of 184-196. 

 For all parameters in both scenarios, the actual number of datasets in which the 

95% CI enveloped the truth lay within the acceptable range (Figure 2). Broadly speaking, 

there is greater statistical uncertainty in the parameter estimates (represented by the width 

of the credible intervals) in the first scenario in which inference was based on 

polymorphism data alone. In the second scenario, one might have expected a loss of 

information because the identity of the ancestor is provided 10 PNe generations prior to 

sampling. However, this seems to have been outweighed by the additional information 

gained from the signal of divergence. 
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 All three parameters, including the transition:transversion ratio κ, were well-

estimated from the data, indicating that the approximation to parent-dependent mutation 

works well. The uncertainty in estimating θ is greater for lower values, presumably 

because there are fewer informative sites. In estimating γ, there appears to be good power 

to distinguish positive from negative selection. However, the credible intervals get wider, 

representing greater uncertainty, as one moves away from γ = 0. This pattern is 

asymmetrical in the second scenario, in which the uncertainty in estimating γ decreases 

more slowly for positive than negative selection. This can also be explained by the 

number of informative sites: positive selection promotes diversity while negative 

selection suppresses it. 

 Colored vertical lines in Figure 2 highlight 95% CIs that did not include the true 

value. This allows one to visualize any systematic patterns that may be present in the 

simulations. For κ and γ there does not appear to be a consistent pattern in the datasets for 

which the 95% CI excluded the truth. However for θ it appears that in most of these 

cases, the mutation rate was under-estimated. This suggests a slight downward bias, 

although the scatter of point estimates (solid circles) around the truth indicates that it is 

not severe. The overall picture, therefore, is encouraging and consistent with the method 

being well-calibrated. 

Analysis of Polymorphism in a Meningococcal Antigen 

 As noted earlier, the HKY85 codon model with recurrent selection that we have 

developed has the same substitution rate matrix as the NY98 model, which is frequently 

used for phylogenetic analyses of selection. Nielsen and Yang [46] originally investigated 
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the link between the population-scaled selection coefficient γ and the DN/DS ratio (which 

they call ω) in a model of recurrent selection. By equating the substitution rate in the two 

cases, they obtained the relationship ! = " 1# e
#"( ) . It has become popular to apply 

phylogenetic models of selection such as NY98 to polymorphism data, and here we 

compare methods that would estimate γ by inverting this relationship to the DN/DS ratio 

against our new approach. 

 For some time it has been known that intragenic recombination within populations 

can cause problems for phylogenetic analyses of selection because recombination can 

resemble repeat mutation when rigidly imposing a tree structure, and this in turn can 

generate false positives in tests for selection [32, 33]. To counter this problem, Wilson 

and McVean [42] proposed a method, omegaMap, which estimates the DN/DS ratio 

within recombining populations by approximating the coalescent with recombination. 

OmegaMap estimates the DN/DS ratio ω by treating selection within populations as a 

form of mutational bias: when ω > 1 (positive selection) non-synonymous mutations are 

more likely to arise than neutral mutations, and when ω < 1 (negative selection), non-

synonymous mutations are less likely to arise than neutral mutations. All mutations, 

having arisen, behave neutrally. 

 We refer to this treatment of selection at the population level as aristogenetic, in 

honor of Osborn's discredited theory of adaptive evolution [47] in which adaptive 

mutations have an inherent propensity to arise in the genome. We can emulate the 

aristogenetic model of omegaMap using our approach by formulating a neutral model 

with mutation rate given by the NY98 model. Whereas omegaMap models linkage 
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disequilibrium between sites, and estimates the population-scaled recombination rate ρ, 

we assume independence between sites, equivalent to free recombination. We compare 

omegaMap and this aristogenetic NY98 model to our HKY85 model with recurrent 

selection. This comparison serves two purposes. Firstly, in comparing omegaMap to an 

aristogenetic NY98 model, we can learn what effect our assumption of independence 

between sites has on the analysis, and further test the adequacy of our approximation to 

parent-dependent mutation. Secondly, in comparing the aristogenetic models to the 

HKY85 model with recurrent selection, we can quantify what difference, if any, this 

makes to inference. 

 Our frame of reference is a collection of 23 meningococcal porB3 sequences 

isolated from carriers in England and Wales [48]. The porB3 locus encodes an antigenic 

cell surface porin protein important for proper cell growth and pathogenesis. The protein 

consists of eight loop regions that span the cell membrane. Figure 3A shows the point 

estimate and 95% CI for ω using the adaptive sliding window model of omegaMap [42]. 

The majority of the gene appears subject to negative selection, with evidence for positive 

selection in four of the extracellular loop regions. The point estimate of ρ was 48.9 per 

kilobase (95% CI 33.3 – 68.4), which is considerable, but not what you would call free 

recombination. 

 In Figure 3B, the point estimate and 95% CI are shown as estimated from an 

aristogenetic NY98 model assuming the same model of variation in ω and no linkage 

disequilibrium (LD) between sites. Both point estimate and credible interval are nigh-on 

identical between omegaMap and the aristogenetic NY98 model. This is reassuring on at 

least two levels. Firstly, it is further evidence that our approximation to parent-dependent 
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mutation works well. Secondly, to find that the estimates of ω should be so similar 

despite the very different approaches to dealing with recombination suggests that, for 

aristogenetic models at least, inference of selection is robust to LD. As a disclaimer, 

however, when the recombination rate is low it would still be prudent to test robustness 

by simulation. It is also worth emphasizing that the assumption of free recombination is 

quite different to the assumption of no recombination (complete LD) when directly 

applying phylogenetic analyses of selection [25], which are vulnerable to false positives. 

By a very informal argument, one might hope that imposing less structure on a problem 

(i.e. by assuming sites are unlinked within a population) would be less pathological when 

the model assumptions are violated than imposing more structure on a problem (by 

assuming sites are completely linked). 

 In contrast, the differences in inference between the aristogenetic models and the 

HKY85 model with recurrent selection are striking; Figure 3C illustrates the transformed 

parameter ! = " 1# e
#"( )  for the purposes of comparison. Principally, there is much 

greater uncertainty in parameter estimation, as witnessed by the wider 95% CI. As a 

consequence, the point estimate changes more smoothly over the gene, and the distinction 

between sites estimated to be under positive versus negative selection is less pronounced. 

Figure 3D shows the posterior probability of positive selection (ω > 1) under the three 

models. OmegaMap and the aristogenetic NY98 model (red and yellow lines) are nearly 

indistinguishable from one another. Compared to the HKY85 model with recurrent 

selection (green line), inference under the aristogenetic models produces a sharper 

transition from areas of low to high probability of positive selection, and absolute 
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probabilities are more extreme (closer to 0 or 1). The locations of sites under positive or 

negative selection, however, are consistent. 

 Estimating the strength of selection within a population is clearly quite a different 

undertaking to estimating the strength of selection at the phylogenetic level. On a 

phylogenetic timescale, the DN/DS ratio relates directly to the selection coefficient γ in a 

model of recurrent selection. However, the examination here of aristogenetic models 

suggests that while it may perfectly possible to obtain a good estimate of DN/DS within a 

population, the relationship to the selection coefficient is less immediate. In other words, 

there is more stochasticity in the relationship between selection and the DN/DS ratio 

within a population; thus the latter predicts the former less efficaciously. This should not 

come as a surprise [49]; indeed it forms the basis for the MK test [35]. Nevertheless, our 

combined population genetics-phylogenetics approach lets that additional stochasticity to 

be properly taken into account. 

Differential Selection in an HIV-1 Transmission Pair 

 Finally we apply our population genetics/phylogenetics approach to the analysis 

of selection acting on multiple populations. Human immunodeficiency virus type 1 (HIV-

1) is a rapidly evolving retrovirus that chronically infects patients by continually adapting 

to evade the host immune response. The human immune system mounts a range of 

responses including the cytotoxic T lymphocyte (CTL) response, which is mediated by 

class I human leukocyte antigen (HLA) molecules. Human cells expressing HLA-I 

recognize and present virus molecules, initiating a CTL response that kills infected cells 

to halt viral replication. The success of the CTL response depends on the recognition of 

specific viral antigens, or epitopes, by the HLA-I repertoire. The virus can evade the CTL 
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response by mutating to epitopes not recognized by the host's particular HLA-I repertoire. 

Viral proteins carrying such mutations may suffer a reduction in functional efficacy, and 

thereby carry a fitness cost in a different HLA-I environment. Reversions to wild type are 

therefore often seen following infection of a new host [50]. 

 Here we characterize natural selection in the gag gene of three HIV-1 populations 

sampled from a donor-recipient transmission pair: one from the donor (D0) and recipient 

(R0) shortly following transmission, and one from the recipient four years later (R1). The 

donor had been infected for eight years previously, and the recipient received no 

antiretroviral treatment over the course of the study [50]. The analysis serves to test the 

performance of our methods because the evolution of HIV-1 in these patients was to 

some extent predicted by their HLA types, and recognition of virus epitopes by the host 

can be confirmed in the laboratory. We do not pretend that the HIV-1 population in vivo 

meets all the assumptions made by the model – in particular one might expect 

demographic growth following transmission. The ability of the method to perform despite 

this is one of factors of interest. 

 Following the omegaMap approach [42], we modeled variation in the selection 

coefficient γ, which we estimated separately for the three populations, using an adaptive 

sliding window model, with an average window length of five codons. Figure 5 shows 

the posterior probability of positive selection (γ > 0) for each population. The plots are 

annotated with colored vertical bars indicating the sample frequency of amino acid 

polymorphisms relative to the sequence inferred close to the point of transmission. Black 

lines above depict known gag epitopes that are restricted to the donor (GL8) and recipient 
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(QW11, VL8, EW10, FK10) HLA types. Functional activity towards known epitopes by 

the host immune system was confirmed by enzyme-linked immunospot assay [50]. 

 Overall, the signal of selection was strongest in population R1, probably because 

it has the largest sample size and longest branch leading to it. A stronger signal confers 

tighter CIs around γ (not shown) and greater perturbation in the probability of positive 

selection away from the prior expectation of 0.5 (Figure 5). Informally then, we consider 

sites to be subject to positive selection when they have a posterior probability exceeding 

0.5 and a visually discernible increase over the background probability for that 

population. 

 Positive selection was detected at an Ile to Leu mutation within the QW11 epitope 

and a Val to Leu mutation flanking the EW10 epitope in the recipient. The transmitted 

forms of QW11 and EW10 are both HLA-restricted to (i.e. recognized by) recipient HLA 

allele A*2501. Functional assays confirmed a decrease in CTL recognition of the mutant 

form for both epitopes [50]. These mutations probably represent CTL escape, evolved 

under selection pressure imposed by the new HLA-I regime of the recipient. We also 

detected positive selection in a Phe to Leu mutation in the GL8 epitope in both donor and 

recipient. The Leu variant, which is HLA-B8-restricted, was absent from the R0 

population, implying that Phe was the transmitted form. The donor and recipient were 

HLA-B8 positive and negative respectively. Therefore, we interpret the detection of 

positive selection in D0 and R1 to reveal an incomplete sweep in the donor of the Phe 

epitope, which was transmitted, followed by a reversion to the Leu wild type in the 

recipient. 
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 The ability to experimentally verify allelic differences in one aspect of viral 

fitness (strength of the elicited immune response) supports the population and 

phylogenetic evidence for positive selection at some sites. This is reassuring, and it leads 

one to speculate that the detection of positive selection at various other sites for which 

there is currently no functional explanation may indeed be real. However, what of the 

known epitopes at which there was no evidence for positive selection? In general, it does 

not follow that the existence of a selective pressure will necessarily lead to an adaptive 

change, for reasons including lack of mutational opportunity. However, the mutation rate 

in HIV is high, and low-frequency amino acid variants were observed in epitopes VL8 

and FK10. But for CTL escape to occur, a mutation must not only confer evasion of the 

immune response, but also avoid too onerous a penalty in the normal functioning of the 

protein. In other words, the existence of a known vulnerability to an HLA-I allele does 

not imply the existence of alternative epitopes able to confer a net fitness advantage in 

that environment. The absence of a signal of positive selection in epitopes VL8 and FK10 

is not, therefore, an obvious problem. 

Discussion 

 In this paper we have introduced a combined population genetics/phylogenetics 

approach to the analysis of selection in patterns of polymorphism and divergence. Our 

goal was to apply flexible models of selection that incorporate multiple alleles, multiple 

species and variation in selection pressures spatially and over time, in a likelihood-based 

framework. To illustrate our approach and its connection to related methods such as PRF 

[36] and omegaMap [42], we performed analyses of human toll-like receptors [43], the 
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meningococcal porB3 antigen [48] and CTL escape and reversion in an HIV-1 

transmission pair [50]. 

 Although the motivation for developing a combined population 

genetics/phylogenetics approach was the analysis of selection, it can be thought of as a 

more general method for integrating these two groups of techniques that will become 

increasingly important with the advent of deep population sequencing [5]. We introduced 

the idea of phylogenetic conditioning that allows the stationary distribution of allele 

frequencies from classical population genetics models grounded in diffusion theory to be 

integrated with modern phylogenetic models based on Markov chains, and we described 

the population pruning algorithm which takes into account uncertainty in the ancestral 

state of populations at the tips of the tree. Our approach may help understand the apparent 

relaxation of functional constraint observed towards the tips of phylogenies [34], which 

we explain in terms of sampling low-frequency derived mutations that are destined for 

loss. This method of combining population genetics and phylogenetics models could also 

be used for multi-species or multi-population analyses of neutral evolution. 

 The diffusion models underpinning our work make a variety of assumptions, 

including constant population size, no population structure and parent-independent 

mutation. In response to the last of these, we developed an approximation to parent-

dependent mutation to allow for inference under very general mutation models. 

Simulations showed the approximation to perform very well. However, we inherited the 

remaining assumptions of these methods, and this is a clear avenue for further 

investigation. The extension to models incorporating demographic change and migration 

are obvious starting points. 
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 Although we showed in one of our analyses of the meningococcal porB3 antigen 

that inferences about selection were robust to our assumption of free recombination 

between sites within a population, this is an area for improvement. In the neutral case, our 

model suggests that conditioning on the ancestral allele within a population is analogous 

to sampling one individual with that allele. This suggests an obvious way to extend the 

PAC approximation [56] to the coalescent with recombination to multiple populations. It 

may be that PAC can also be adapted to model selection within populations as a way of 

taking this forward. 

 In this paper we concentrated almost exclusively on models of recurrent selection, 

in which the fitness of an allele is measured relative to the ancestral allele [25, 36]. This 

is a mathematical convenience that has peculiar consequences. Under positive selection 

(γ > 0), the ancestral allele is disfavored, creating a continual drive for innovation. 

However, under negative selection (γ < 0), derived alleles are disfavored. It follows that 

were a mildly deleterious allele to fix by drift, upon fixation the selection regime would 

change and the back mutation would not restore fitness as one might expect, but in fact 

erodes it further. While it is difficult to make biological sense of this behavior, it will 

occur rarely for moderate to highly deleterious selection coefficients. When the 

substitution rate is low enough that one expects no more than a single substitution per 

branch per site, the problem basically does not arise. In any case, models of recurrent 

selection have a hold on phylogenetic analyses of selection, and thus it makes sense to 

use this as a starting point. Nonetheless, our work provides a platform for developing 

non-recurrent models of selection in which the substitution process might be modeled 

separately from changes in the selection regime. We express optimism that such models 
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might pave the way for the sitewise analysis of non-coding regions, opening up an area of 

investigation that has heretofore received much less attention. 

Methods 

Overview 

 At a fundamental level, population genetics and phylogenetics differ in that the 

former models changes in allele frequency (a continuous quantity) within species while 

the latter models changes in the ancestral allele (a discrete quantity) between species. To 

reintegrate the approaches, we introduce phylogenetic dependency to the stationary 

distribution of allele frequencies within a population by conditioning on the identity of 

the ancestral allele. To calculate the likelihood of an observed sample of alleles from a 

population, conditional on the ancestral allele, we integrate over the population allele 

frequencies. To calculate the joint likelihood of samples from several populations we 

extend the usual pruning algorithm [30] by summing over the identity of ancestral alleles 

for each of the populations, in addition to the internal nodes in the phylogeny, weighted 

by the phylogenetic substitution probabilities that arise from the population genetic 

model. 

 To illustrate, we construct a biallelic model that includes, as a special case, PRF, 

and adapt it to the analysis of MK tables [35]. For the multiallelic treatment that follows, 

we use as our starting point the stationary distribution of allele frequencies in a parent-

independent model with selection [18]. We develop a codon-based model of recurrent 

directional selection with two fitness classes, by adopting the standard technique of 

measuring fitness relative to the ancestral allele [25, 36]. To introduce parent-dependent 
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mutation, we adapt the likelihood by conditioning the mutation rate on the ancestral 

allele, and employing a coalescent approximation; through Wright-Fisher simulations we 

test the adequacy of the approximation. We use an adaptive sliding window model for 

intragenic variation in selection pressure [42], and apply the new approach to Bayesian 

analyses of polymorphism data in a meningococcal antigen [48] and polymorphism and 

divergence data in three HIV-1 populations [50]. 

Phylogenetic Conditioning and Population Pruning 

 At a single locus, let f be a vector of the frequencies of K alleles in a population 

(typically, K = 4 nucleotides, 20 amino acids or 61 non stop codons), where fii=1

K

! = 1 . 

We introduce phylogenetic conditioning to the stationary distribution of allele frequencies 

in the population, p f( ) , using Bayes rule. Suppose A is the identity of the ancestral 

allele, then the phylogenetically conditioned distribution is 

  p f | A( ) =
Pr A | f( ) p f( )

Pr A( )
, (1) 

where Pr A | f( )  is the probability that allele A is ancestral given f, and Pr A( )  is a 

normalizing constant. Suppose x is a vector of the number of times each allele was 

counted in a sample at a single locus, where x
ii=1

K

! = n . To calculate the likelihood 

Pr x | A( ) , conditional on the ancestral allele, we integrate over the population allele 

frequencies 

  Pr x | A( ) = Pr x | f( ) p f | A( )
f

! , (2) 

where Pr x | f( )  is an appropriate sampling distribution such as the multinomial. 
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 Inherent to phylogenetic conditioning is the idea that the ancestral allele cannot be 

directly observed for a population. Therefore we have to account for uncertainty in the 

ancestral allele by summing over all possibilities when calculating the likelihood. This 

extends the standard phylogenetic approach of summing over the allelic state at internal 

nodes on a tree, most efficiently done by Felsenstein's pruning algorithm [30], by 

requiring that the ancestral states at the tips of the tree are also summed over. We define 

the population pruning algorithm as follows: 

1. Label nodes 1…r in order of greater tree depth, where r is the root. 

2. For i in 1…(r – 1) and j in 1…K calculate αij, where 

 ! ij =

pjk
ti( )!Di1k

!Di 2k

k=1

K

" if i is internal

pjk
ti( )#ik

k=1

K

" if i is a tip.

$

%

&
&

'

&
&

 (3) 

3. Calculate the full likelihood as !
k
"

Dr1k
"

Dr 2k

k=1

K

# . 

In the above, Di1 and Di2 are the descendants of node i, ti the branch length above node i, , 

πk and pjk
t( )  the stationary distribution and transition probabilities of the phylogenetic 

Markov chain and !
ik
= Pr x

i
| A = k( )  is the phylogenetically conditioned likelihood for 

the population at node i. 

Biallelic Case 

 Consider a two-allele model of directional selection where s is the selective 

advantage of allele 1 over allele 2 and µ1 and µ2 are the per-generation rates of mutation 

to alleles 1 and 2 respectively. The stationary distribution of allele frequencies is [18] 
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  p f( )! e" f1 f
1

#1 $1 f
2

#2 $1 , (4) 

where ! = 2PN
e
s  and !

i
= 2PN

e
µ
i
 are the population-scaled selection coefficient and 

mutation rates, P the ploidy and Ne the effective population size. The model is time-

reversible [51], so Pr A | f( )  equals the forward-in-time fixation probability. This is 

known exactly in the biallelic case, but for analytic tractability and for the benefit of the 

multiallelic treatment that follows, we take the low-mutation limit [19] 

  Pr A | f( ) =

1! e
!" f1

1! e
!" if A = 1 

e
!" f1 ! e

!"

1! e
!" if A = 2.

#

$
%%

&
%
%

 (5) 

 A difficulty in analyses of selection is the question of how to assign selection 

coefficients to individual alleles. The conventional solution [25, 36] is to measure 

selective advantage relative to the ancestral allele. When γ > 0, derived types are favored 

over the ancestral type; this is known as positive selection. Conversely, when γ < 0, the 

ancestral type is favored over derived types; this is known as negative selection. We 

adopt this approach, which we refer to as recurrent directional selection. Thus 

  p f | A( ) =
1! e!" fA( ) f1

#1 !1 f
2

#2 !1

$ #
1
,#

2( ) 1! 1
F
1
#A ,#1 +#2 ,!"( )%& '(

 (6) 

where ! a,b( )  is the beta function and 
1
F
1
a,b,c( )  is the confluent hypergeometric 

function. Integrating over a binomial sampling distribution, 

  

p x | A( ) =
n

x
1

!
"#

$
%&
f
1

x1 1' f
1( )

x2
Pr f | A( )d f1

0

1

(

=
n

x
1

!
"#

$
%&
) x

1
+*

1
, x

2
+*

2( )
) *

1
,*

2( )

1'
1
F
1
xA +*A ,n +*1 +*2 ,'+( ),- ./

1'
1
F
1
*A ,*1 +*2 ,'+( ),- ./

.

 (7) 
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For the population pruning algorithm we also need the phylogenetic substitution rate per 

PNe generations, approximated by 

  qij = lim
f!0

" j

2

1# e#$ f

f 1# e#$( )
=
" j

2

$

1# e#$
 (8) 

[Nie03], and the resulting stationary allele frequencies !
i
= "

i
/ "

1
+"

2( ) . 

 This model includes PRF [36] as a special case in the infinite sites limit. To 

emphasize the close connection between the methods, we apply our biallelic model to the 

analysis of data in the form of MK tables, in which the number of synonymous and non-

synonymous sites that are polymorphic or divergent between a pair of species are 

counted. Following the MK-PRF parameterization [36, 39], θS and θR are the population-

scaled synonymous and non-synonymous mutation rates respectively, τ is the divergence 

time between the species (in units of PNe generations) and γ is the selection coefficient, 

shared by all sites. We assume independence between sites, which is equivalent to 

assuming linkage equilibrium between sites within each population. Using Equations 6-8 

and the population pruning algorithm, we calculate the probabilities (ϕPS, ϕDS, ϕPN, ϕDN) 

that a site is polymorphic (P) or divergent (D) by summing over possible configurations 

in the two species that lead to these patterns for synonymous (S; γ  = 0) and non-

synonymous (N; γ ≠ 0) sites separately. We take 1! "#  to be the probability a site is 

neither polymorphic nor divergent, and estimate the parameters (θS, θR, τ, γ) by maximum 

likelihood using a multinomial likelihood with five outcomes. 
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Multiallelic Hot-or-Not Model 

 For multiallelic models, our starting point is the Wright-Dirichlet distribution, 

which is the solution to the stationary distribution of allele frequencies in a diffusion 

model with parent-independent mutation and selection (PIMS). Conjectured by Wright 

[18], it is a variant on the Dirichlet distribution in which gene frequency combinations 

conferring higher population fitness are up-weighted. In our notation, 

  p f( )! eW f( )
fi
"i #1

i=1

K

$ , (9) 

where w f( )  is the population fitness as a function of f and W f( ) = 2PN
e
w f( )  is its 

population-scaled counterpart. 

 We concentrate on models with two fitness classes, which we refer to as hot-or-

not models. In the hot-or-not model, alleles encoding the favored (hot) phenotype have 

selective advantage γ over alleles encoding other phenotypes; in a codon model, these 

phenotypes correspond to the 20 amino acids. In the hot-or-not model, the Wright-

Dirichlet distribution simplifies to 

  p f( )! e" FH fi
#i $1

i=1

K

% , (10) 

where Fi is the total frequency of alleles with the same phenotype as allele i, and H 

represents an allele encoding the hot phenotype. 

 To proceed, we make two assertions informed by the biallelic case. First, that this 

multiallelic model is time-reversible, which implies that the probability allele A is 

ancestral given f equals the fixation probability. Second, that in the low-mutation limit, 

the fixation probability is 
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  Pr A | f( ) =

1! e
!" FH

1! e
!"

fA

FH
if A is hot 

e
!" FH ! e

!"

1! e
!"

fA

1! FH
if A is not.

#

$
%
%

&
%
%

 (11) 

Based on these assertions and assuming recurrent selection, in Appendix A we derive the 

phylogenetically conditioned distribution 

  p f | A( ) =
fA

FA

!A

"A

1# e#$ FA( ) fi
"i #1

i=1

K

%
& "( ) 1# 1

F
1
!A ,!,#$( )'( )*

, (12) 

and corresponding likelihood 

  p x | A( ) =
n

x

!
"#

$
%&
xA +'A( )(A

'A XA +(A( )
) x + '( )

) '( )

1*
1
F
1
XA +(A ,n +(,*+( ),- ./

1*
1
F
1
(A ,(,*+( ),- ./

, (13) 

where XA and ΘA are the total number of copies and total mutation rate for alleles with the 

ancestral phenotype, and Θ is the total mutation rate across all alleles. 

Parent-Dependent Models 

 Phylogenetic conditioning lends itself naturally to approximating parent-

dependent mutation because the ancestral allele will often be the genetic background 

upon which a mutation arises. Therefore we modify the mutation rate vector θ  depending 

on the ancestral allele. In Appendix B we detail the rationale for our choice of ancestor-

dependent θ . Briefly, we match the rates for a parent-independent and a parent-dependent 

model by using coalescent-averaged mutation probabilities, in which we calculate the 

expected probability of mutation from the ancestral allele A to every other allele, 

averaging over the neutral coalescent time. 
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 We use our parent-dependent approximation to implement a codon-based analog 

to Hasegawa, Kishino and Yano's [44] mutation model (henceforth HKY85). In the 

codon-based HKY85 model the alleles are the K = 61 non stop codons, and the mutation 

rate is 

  !ij =
" j

C

1 if i and j  differ by 1 transversion

# if i and j  differ by 1 transition

0 otherwise,

$

%
&

'
&

 (14) 

where C normalizes the rate matrix so that the expected mutation rate is θ/2 per PNe 

generations. This allows us to produce a population genetic formulation of the 

phylogenetic Nielsen and Yang model [25] commonly used for analyses of selection. We 

call this model HKY85 with recurrent selection; it has stationary distribution π and 

(following Equation 8) phylogenetic substitution rate 

  qij =
!ij
2

1 if codons i and j  are synonymous

"
1# e#" if codons i and j  are non-synonymous.

$
%
&

'&
 (15) 

 Nielsen and Yang [46] also formulated a population genetic interpretation of their 

phylogenetic model [25] (henceforth NY98). In their formulation, which is followed by 

omegaMap [42], selection is treated as a form of mutational bias, so that advantageous 

alleles are more likely to occur by mutation than neutral alleles, and deleterious alleles 

less likely. Thereafter, the population dynamics of all alleles are treated as neutral. We 

can mimic this treatment of selection as mutational bias, which we refer to as the 

aristogenetic NY98 model, by taking the neutral limit ! " 0  of the likelihood (Equation 

13) and equating the mutation rate to the phylogenetic substitution rate (Equation 15). 
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Testing the Model by Simulation 

 Since our likelihood function relies on several approximations, we wished to 

evaluate its performance in inference. To do so, we employed the Bayesian idea of 

calibration [45]; a 95% credible interval is said to be well-calibrated if it contains the true 

parameter value with probability 0.95. In simulations this can be tested directly. For the 

HKY85 model with recurrent selection, we simulated parameters 200 times as follows: θ 

from a log-uniform distribution with range (0.02, 0.2), κ from a log-uniform distribution 

with range (0.05, 20), γ from a normal distribution with mean 0 and standard 

deviation 10. For each of the 200 draws of !," ,#( )  we used Wright-Fisher simulations to 

generate data comprising n = 30 sequences of length L = 250 codons; sites were 

simulated independently. We then performed inference using Markov chain Monte Carlo 

(MCMC) to obtain a posterior distribution on the parameters !," ,#( )  for each dataset 

using the same priors that simulated the parameters. Under these conditions, if our 

likelihood approximation is adequate, we expect that the 95% credible intervals for each 

parameter will contain the truth in 95% of simulations, with an acceptance range of 184-

196 datasets. 

 We performed this procedure for two scenarios: one in which we assumed the 

ancestral allele is known for each site in the population. This serves as a test of the 

phylogenetically conditioned likelihood. In the second, we assumed the ancestral allele is 

known 10 PNe generations prior to sampling. This serves as an additional test of the 

phylogenetic substitution probabilities and the population pruning algorithm. Preliminary 

simulations revealed a sensitivity to the precise definition of which allele is ancestral. In 
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Appendix C we provide details of our investigation into the definition of the ancestral 

allele. The outcome of these deliberations was to define the ancestral allele as the oldest 

allele currently segregating in the population. 

Inferring Variation in Selection in a Meningococcal Antigen 

 For the analysis of polymorphism data in a sample of 23 meningococcal porB3 

sequences [48] we used an adaptive sliding window model for variation in selection 

pressure [42]: variation in the DN/DS ratio ! = " 1# e
#"( )  along the gene is treated as a 

piecewise constant function, such that adjacent sites share the same ω with probability 

1! p  and have different values of ω with probability p. Reversible jump MCMC is used 

to integrate over the number and position of transitions in ω, and the values of ω  [42], 

resulting in a smoothly varying point estimate and credible intervals for ω along the gene. 

 Three population genetic formulations were investigated: omegaMap, the NY98 

aristogenetic model, and the HKY85 recurrent selection model. We assumed improper 

log-uniform priors for θ, κ, and (in the case of omegaMap) ρ, an exponential prior with 

mean 1 for ω, and an average window length of  1 p = 30  codons. Sites containing indels 

were removed from the analysis. Regular MCMC moves were used to integrate over θ, κ 

and ρ [42]. For each analysis two chains of length 500,000 iterations were run and, after 

removing a burn-in of 10,000 iterations, compared for convergence and merged to obtain 

the posterior distribution. 
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Analysis of Multiple Populations of HIV-1 

 We analyzed polymorphism and divergence in the gag gene of three HIV-1 

populations [50] sampled from a donor-recipient transmission pair: one from the donor 

(D0) and recipient (R0) shortly following transmission, and one from the recipient four 

years later (R1). Owing to partially overlapping PCR products and the presence of indels, 

the number of sequences per site was not constant in gag. The mean sample size was 8.8, 

8.8 and 26.2 sequences in D0, R0 and R1 respectively. We treated indels as missing data, 

rather than discarding the entire site in the alignment. 

 We separately parameterized the three branches of the tree relating populations 

D0, R0 and R1. Applying the HKY85 recurrent selection model, we estimated θ, κ, γ and 

the branch length T for each. We assumed improper log-uniform priors on θ, κ and T. We 

employed the same model of variation in γ along the gene as for ω above, assuming a 

mean window length of 5 codons and a normal prior distribution for γ with mean 0 and 

standard deviation 10. We used MCMC to obtain the posterior distribution of the 

parameters, modifying the reversible jump moves because γ can be positive or negative. 

Two chains of 1,000,000 iterations were run, with a burn-in of 10,000 iterations. These 

were compared for convergence and merged to obtain final results. 
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Figure Legends 

Figure 1  Synthesizing population and phylogenetic components of an evolutionary 

model. At the phylogenetic timescale, fluctuations (A) in gene frequency over time are 

conceptually reduced (B) to a consideration of the substitution process alone. When 

considering a snapshot of the population (C), we employ a population genetics model of 

gene frequencies conditioned on the ancestral allele, whose identity is governed by the 

phylogenetic substitution process. To calculate the likelihood of a sample of sequences 

from several populations (D), we can use Felsenstein's pruning algorithm to sum over the 

ancestral alleles at internal nodes (d,e), as usual, and additionally at the tips (a-c). This 

approach accounts for the presence of derived alleles in molecular sequences. 

 

Figure 2  Testing calibration by simulation. The posterior mean (circles) and 95% 

credible interval (vertical lines) of the mutation rate (θ), transition:transversion ratio (κ) 

and strength of selection (γ) are plotted against their true values for 200 simulated 

datasets under two scenarios. To test phylogenetic conditioning, inference was performed 

with known ancestral states. To test phylogenetic conditioning and population pruning, 

the ancestral state was recorded 10 PNe generations prior to sampling. Colored lines draw 

attention to datasets for which the truth lies outside the 95% credible interval. The top left 

number in each graph reports the number of simulations for which the 95% credible 

interval enveloped the truth (a range of 184–196 is acceptable). In all cases 30 sequences 

of length 250 codons were simulated per dataset. 
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Figure 3  Inference of selection from polymorphism data in meningococcal porB3: 

comparing aristogenetic to recurrent selection models. The inferred posterior mean (solid 

line) and 95% credible interval (shaded region) of the dN/dS ratio (ω) is plotted for (A) 

omegaMap (B) an aristogenetic Wright-Dirichlet model designed to emulate omegaMap 

(C) a Wright-Dirichlet model of recurrent directional selection. In (D) the posterior 

probability of positive selection (ω > 1) is compared between the three approaches. 

 

Figure 4  Immune escape and reversion in an HIV-1 transmission pair. (A) The posterior 

probability of positive selection in gag p17 and p24 is shown for three population 

samples: the donor shortly after transmission (D0), the recipient shortly after transmission 

(R0) and the recipient 4 years later (R1). The height of colored vertical bars indicates the 

sample frequency of amino acid variants relative to the inferred sequence close to 

transmission. The locations of known epitopes that are HLA-restricted in the recipient (4 

epitopes) or donor (GL8) are marked by horizontal solid black bars. (B) A schematic of 

the sampling points in the donor-recipient transmission chain. 

 

Figure S1  The operational definition of ancestral identity affects the accuracy of 

phylogenetic conditioning. (A) When the operational definition of ancestral identity is the 

last allele to have fixed or – as here – the state of the population MRCA, there is a 

discrepancy between theory (purple bars) and simulations (green bars). Simulations, 

which were conducted for a codon model with θ = 0.3, κ = 1, γ = 0, report a non-

negligible probability of failing to sample the ancestral allele, which is not predicted from 

theory, and could be erroneously attributed to positive selection (red bars). (B) When the 
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operational definition of ancestral identity is the oldest allele segregating in the 

population, the differences are resolved. (C) The cause of the problem: an ancestral allele 

(cyan) is lost from the population long before any other allele fixes, generating 

appreciable periods of time when the ancestral allele is no longer segregating in the 

population. 
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Table 1 Glossary of terms 

Aristogenetic mutation: the treatment of selection within populations merely as a form 

of mutational bias in which better (fitter) forms are more likely to be generated. 

Coalescent averaged: the method of taking the neutral expectation of a quantity such as 

a mutation rate. 

Hot-or-not model: an adaptive landscape in which there are just two fitness forms, one 

that is hot (i.e. fit) and one that is not (i.e. less fit). 

Phylogenetic conditioning: the introduction of phylogenetic dependency into a 

distribution of gene frequencies by conditioning on the identity of the ancestral allele. 

PIMS: a model of parent-independent mutation and selection. 

Population pruning: an extension of Felsenstein's pruning algorithm to include 

uncertainty in the identity of ancestral alleles at the tips of the phylogeny. 

Recurrent selection: a model of directional selection in which the process of substitution 

and shifts in the adaptive landscape are deliberately confounded by assuming that fitness 

is determined by the ancestral allele. Positive selection arises when the ancestral type is 

less fit than derived types, and the converse is referred to as negative selection. 

Wright-Dirichlet distribution: a variant of the Dirichlet distribution in which gene 

frequencies that confer higher population fitness are up-weighted. Conjectured by Wright 

to be the solution to the stationary distribution of gene frequencies under PIMS. 
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Table 2 Emulating Sawyer and Hartl 

θS θR τ γ 

1.11 / 1.11 2.86 / 2.87 3.52 / 3.54 -0.774 / -0.764 

1.11 / 1.11 1.11 / 1.11 2.61 / 2.62 0.000 /  0.001 

1.42 / 1.42 1.21 / 1.21 5.33 / 5.36 0.614 / 0.615 

0.79 / 0.79 2.19 / 2.19 1.53 / 1.53 -0.775 / -0.768 

1.11 / 1.11 2.84 / 2.85 7.14 / 7.18 -1.44 / -1.43 

0.79 / 0.79 2.84 / 2.85 15.5 / 15.6 -2.27 / -2.27 

0.998 / 0.999 0.607 / 0.607 5.01 / 5.02 1.19 / 1.19 

2.00 / 2.00 0.123 / 0.123 5.01 / 5.04 6.02 / 5.98 

1.26 / 1.27 0.251 / 0.251 8.49 / 8.54 3.90 / 3.89 

1.58 / 1.58 3.41 / 3.43 4.70 / 4.73 -2.27 / -2.27 

A comparison of maximum likelihood estimates of the synonymous (θS) and non-

synonymous (θR) mutation rates, the divergence time (τ) and strength of selection (γ) 

using the Poisson random field model of Sawyer and Hartl (left values) and our finite 

sites version based on a Wright-Dirichlet model (right values) for Toll Like Receptors 1-

10 in humans. 
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Appendix A: Deriving the Multiallelic Hot-or-Not Model 

 The greatest difficulty in applying the Wright-Dirichlet distribution to data 

analysis is computing the normalization constant. Various methods are available, 

including importance sampling and Taylor series expansion [22]. In a multiallelic PIMS 

model of directional selection with no dominance, the Wright-Dirichlet distribution 

simplifies to 

  p f( )! e
" i fi fi

#i $1

i=1

K

% , (A1) 

where γi is the population-scaled selection coefficient for allele i. The normalizing 

constant for this distribution is equal to the characteristic function for a Dirichlet 

distribution with parameter θ . In addition to the methods mentioned above, it can be 

computed numerically using contour integration in the complex plane [52, 53] 
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where I represents the imaginary unit, ΦK is a (K – 1)-simplex. The contour L is a loop 

beginning and ending at !" , and encircling in the positive direction (anticlockwise when 

the x and y axes correspond to the real and imaginary lines respectively) all the finite 

singularities of the integrand (i.e. the values of γi). We have Mathematica code that 

implements this integral (available on request) but found it numerically unstable. 

 However, in the hot-or-not model we can use Equation A2 to show that 
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where γ is the population-scaled selective difference between fitness classes, F is the total 

frequency of alleles in the favored (hot) fitness class, ΘH is the total mutation rate to 

alleles of that class and Θ is the total mutation rate for all alleles. ! "( )  is the beta 

function with vector argument, so that 

  ! "( ) = # "
i( )

i=1

K

$ # "
ii=1

K

%( ) , (A4) 

and 
1
F
1
a,b,c( )  is the confluent hypergeometric function, which is the solution to the 

confluent hypergeometric equation. The biallelic directional selection model can be posed 

in terms of this equation. Hypergeometric equations appear frequently in theoretical 

physics, and we speculate that the solutions to related hypergeometric equations may 

yield the solutions to other problems of interest in population genetics. 

 Let H be the set of favored alleles, and N the set of disfavored alleles. The 

numbers of alleles in the two classes are KH and KN. Define 
 
h = fi / F : i !H{ } , 

 
g = fi / 1! F( ) : i "N{ } , 
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change of variables f( )! F,g,h( ) , Equation A3 can be factorized so that 
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where !
N
= !" !

H
. This demonstrates that F follows a biallelic Wright-Dirichlet 

distribution with parameters (ΘH, ΘN, γ), and g and h follow independent Dirichlet 

distributions with parameters ! N( )  and ! H( )  respectively. The Dirichlet distribution arises 
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from the neutral case, and this factorization suggests that in a hot-or-not model, evolution 

within class H or N can be characterized as neutral. This in turn supports our assertion 

(see main text) that, in the low-mutation limit, the probability of fixation of allele A 

equals the biallelic fixation probability for the whole class multiplied by the neutral 

fixation probability for allele A within its class. 

 To introduce phylogenetic conditioning, suppose allele A, which is a member of 

the favored class, is ancestral. From Equations 11 and A5, 
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Reversing the change-of-variables, 
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Assuming a multinomial sampling distribution, the likelihood for a sample of size n 

comprising xi copies of allele i equals 
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where XH is the number of alleles sampled in class H and 
n

x

!
"#

$
%&
= n!

1

x
i
!i=1

K

' . However, in a 

recurrent selection model, the ancestral allele is actually disfavored when γ > 0, leading to 

the forms for Equations 12 and 13 in the main text. 

Appendix B: Approximating Parent-Dependent Mutation 

 In developing an approximation to parent-dependent mutation we use a 

coalescent-averaged probability of mutation from the ancestral allele, A, to every other 

allele. The coalescent [54] is a statistical distribution for the topology and branch lengths 

of the genealogy of a random sample of sequences that arises in a selectively neutral 

model. It is convenient to employ the neutral case as the basis for our approximation, 

because there is an explicit separation between the genealogical process and the 

mutational process. Our approach is to find a parent-independent mutation rate vector θ′ 

that matches the parent-dependent probabilities of observing an individual with allele i 

given the ancestral allele A in a neutral population. 

 Taking the neutral limit of the phylogenetically conditioned Wright-Dirichlet 

distribution (Equation 13) yields 

  p f | A( ) =
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!i +eAi "1

i=1

K

#
$ ! + eA( )

, (B1) 

i.e. a Dirichlet distribution with parameter ! + e
A

, where eAi equals 1 if i = A and 0 

otherwise. This suggests that conditioning on the ancestral allele is probabilistically 

equivalent to conditioning on having observed allele A in a sample of size 1. Using the 
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coalescent, we can calculate the probability, mAB, of observing an allele of type B having 

already observed an allele of type A, for general mutation models, 

  mAB = pAB
2t( )
e
! t
d t

0

"

# , (B2) 

since t follows an exponential distribution with rate 1 when time is measured in units of 

PNe generations. For a parent-independent model where the rate of mutation to allele i is 

θi/2, the transition probability from allele A to B in time t is 
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where ! = "
ii=1
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# , therefore 
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For a parent-dependent, time-reversible model, 

  pAB
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where v is a matrix of eigenvectors of the mutation rate matrix, v(–1) is its inverse, and d 

is a vector of the corresponding eigenvalues, so 
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For non time-reversible models, the calculation is a little more involved. 
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 For a given ancestral allele A, we wish to find θ′  so that mAB (B = 1…K) is 

matched for the parent-independent and parent-dependent models. The solution to this 

problem satisfies 
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where the vector mA is calculated from Equation B6 for a time-reversible model. 

However, there are only K – 1 degrees of freedom because mA is constrained to sum to 1; 

therefore Θ′ is not identifiable. We circumvent the problem by imposing the additional 

constraint that !"
A
= 0 , interpretable as no back mutation to the ancestral allele, which is 

consistent with the low-mutation limit for the fixation probability used to motivate our 

implementation of phylogenetic conditioning. This implies that 
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Appendix C: On the Definition of Allelic Ancestry 

 We used Wright-Fisher simulations to test the adequacy of our approximate 

likelihood, as described in the Methods. During simulation we kept a record of the 

ancestral allele at every generation, which we initially defined as the last allele to have 

reached fixation. Preliminary results revealed a discrepancy between our theory and the 

simulations. The major departure from theoretical expectations was the frequency with 

which we drew samples in which the ancestral allele was completely absent. Figure S1A 

shows the distribution of the number of derived alleles in a sample of 30 in a neutrally 

evolving population from theory (purple bars) and simulation (green bars). For the 

parameters used, simulations suggested there should be a 5% probability of failing to 
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sample the ancestral type. Troublingly, only in the case of positive selection (red bars) 

did theory predict an appreciable probability of not sampling the ancestral allele. That 

neutral simulations should generate a pattern that the method confuses with positive 

selection was potentially of great concern. 

 Visualization of simulations over time revealed the cause of the problem (Figure 

S1C). When there are multiple alleles, the ancestral allele can be lost many generations 

before any other allele fixes. During these periods samples cannot contain the ancestral 

allele. By contrast, in the low-mutation limit, no more than two alleles ever co-segregate 

so the problem does not arise. Hence the discrepancy stems from utilizing the low-

mutation limit for the probability of fixation during phylogenetic conditioning. The 

problems gets worse as the mutation rate increases, to the point where fixation rarely 

occurs, and the identity of the last allele to have fixed has little relevance to the current 

state of the population. In fact, in a PIMS model when θ > 1, there is a non-zero 

probability that no allele will fix in a finite number of generations [20]. 

 The fact that fixation is not even theoretically well-defined for some values of θ, 

and the observation that theory and simulations diverge even for modest mutation rates, 

led us to re-evaluate what the appropriate definition of allelic ancestry might in fact be 

when mutation is non negligible. We considered three alternatives for the operational 

definition of allelic ancestry: 

1. The last allele to have fixed. 

2. The allelic identity of the population MRCA. 

3. The oldest allele still segregating in the population. 
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Note that all definitions are equivalent in the low-mutation limit. We repeated simulations 

using the alternative definitions of allelic ancestry, keeping track of the allelic state of the 

population most recent common ancestor (MRCA) or oldest allele. This is more difficult 

to implement because the population genealogy must be recorded and updated (by 

branching and pruning) from one generation to the next during Wright-Fisher simulation. 

 Using the population MRCA guarantees that the ancestral allele is well-defined, 

and quantitatively alleviated the discrepancy between theory and simulations, but did not 

eliminate it. Only by defining the ancestral allele as the oldest allele still segregating in 

the population, a definition inspired by a consideration of the age-ordered Ewens 

sampling formula [55], did we reconcile the simulations with the results expected from 

theory (Figure S1B). This leads us to reason that firstly, the low-mutation limit of the 

probability that an allele was the last to fix (equivalently, is the next to fix) is a good 

approximation to the probability that an allele is the oldest (will persist the longest) when 

mutation is non negligible. Secondly, the identity of the oldest allele characterizes the 

state of the population better than other definitions of allelic identity when mutation is 

non negligible. Therefore we might re-interpret the phylogenetic substitution process in 

terms of a change in the oldest allele, rather than a change in the fixed allele. 

 It is worth noting that in recurrent selection models, the definition of allelic 

ancestry affects the evolutionary dynamics, because the selection regime changes upon a 

change in the ancestral allele. We do not seek to defend this quirk of the model here 

except to say that it is consistent with the general approach of deliberately confounding 

the selection regime with the substitution process by measuring fitness relative to the 
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ancestral allele, which we prefer to interpret as the oldest allele segregating in the 

population. 

 


