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I welcome this opportunity [1] to acknowledge Good’s papers [2, 3, 4, 5, 6], which I
had missed. Good proposed the harmonic mean p-value (HMP) as a classical analog
to a model-averaged Bayes factor (BF) which “should be regarded as an approximate
tail-area probability [p-value|” [2]. His presentation was amusingly apologetic, e.g. “an
approximate rule of thumb is tentatively proposed in the hope of provoking discussion”
and “this rule of thumb should not be used if the statistician can think of anything better
to do” [2]. I believe my paper dispels these misgivings by formalizing Good’s intuitive
argument that the HMP is approximately well-calibrated when small (Eq. 5, [7]) and
deriving an asymptotically exact test for general use (Eq. 4, [7]). Further, I showed the
HMP is a multilevel test procedure (Eq. 6, [7]), demonstrating with examples that it

consequently provides a powerful alternative to Bonferroni and Benjamini-Hochberg [8]

correction for large-scale multiple testing problems.

Held [1] considers the Bayesian properties of the HMP, which are relevant to its interpre-
tation and power. Applications of the HMP are not limited to model selection problems,
however, as it provides a general alternative to Fisher’s method [9] for combining tests

that are not independent [2, 7].
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Good claimed that the HMP is inversely proportional to a model-averaged BF based on

his empirical observations that
BF ~ 1/(yp), 3% <~ <30. (1)

As he noted, this empirical relationship holds only approximately, it holds better for

small p, and ~ is not strictly constant in p [2].

Good’s claim depends on the density of p-values under the alternative, f(p|My4). Ran-
dom variables with distribution functions regularly varying at zero (RVRVy) [10] appear

to capture Good’s empirical observations, producing
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This relationship is approximately inversely proportional for small p and tail index £ < 1,
but may deviate from strict proportionality through the slowly varying function S(p).

Thus the model-averaged BF with prior model probabilities u1 ... ur, would be
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with weights w; = u; /€,
1
up = (i & S(pi)) =%, (4)
£= Z{;l u; and HMP p. In the special case that p|M 4 ~ Beta(¢ < 1,1), then S(p) = 1,
and Good’s empirical relationship would be considered to hold closely for high-powered

tests (¢ < 1) with v = ¢-1

Held [1] considers whether the class of alternatives p|My4 ~ Beta(l,x > 1) supports
Good’s claim. This is an interesting proposition but I have some reservations. The
distribution produces a special case of a RVRV( (Eq. 2), in which £ = 1 and S(p) =
(1 —p)~~1. This yields the relationship BF = S(p), meaning the BF is a slowly-varying
function of p (at zero). Held states that —1/{e (1 —p)log(1 —p)} ~ 1/(ep),p < 0.1, is
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an upper bound on this BF. My reservations are first, that a BF slowly varying in p is
inconsistent with Good’s empirical observations. Second, Held’s bound is a regularly-
varying function of p, making it a loose bound on the slowly-varying BF for small p and
imperfect power (k < o0) (Fig. 1). In conclusion, for BFs slowly varying in p, Good’s
claim that the HMP is inversely proportional to the model-averaged BF does not hold.
Rather than supporting the Bayes factor interpretation of the HMP, Held’s example is

valuable in showing where it breaks down.
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FIGURE 1. The HMP is strongly inversely proportional to BF when p|M 4 ~
Beta(¢ < 1,1) but not when p|M4 ~ Beta(l,x > 1), despite the maximum
BF argument. BF(p) was calculated from each beta density and BF . (p) from
the respective upper bound [1, 11]. BF and ]3 were calculated by simulation:
L = 1000 p-values per simulation, (L — 1) Uniform(0,1) and one Beta(¢,1),
Beta(1,x) or Uniform(0,1) with equal probability, assuming equal weights for P
£ =0.0352 and k = 44.9 were chosen to achieve 90% test power at o = 0.05.

R code: https://doi.org/10.6084/m9.figshare.7699955
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