Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The nonstructural protein 3 (NSP3) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) contains a conserved macrodomain enzyme (Mac1) that is critical for pathogenesis and lethality. While small molecule inhibitors of Mac1 have great therapeutic potential, few have been described. Here, we report the structure-based development of several chemical scaffolds exhibiting low- to sub-micromolar affinity for Mac1 through iterations of computer-aided design, structural characterization by ultra-high resolution X-ray protein crystallography, and binding evaluation with in-solution assays. Potent scaffolds were designed with in silico linkage of previously obtained fragment hits and ultra-large library docking screens of more than 450 million molecules. In total, 160 hits comprising 119 different scaffolds were discovered and 152 Mac1-ligand complex crystal structures were determined, typically to 1 Ã… resolution or better. The structure-activity-relationships emerging from this study may template future drug development against Mac1. Summary: Computational fragment-linking and ultra-large library docking identifies potent inhibitors of the SARS-CoV-2 macrodomain.

Original publication

DOI

10.1101/2022.06.27.497816

Type

Journal article

Journal

bioRxiv

Publication Date

28/06/2022