Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The C. elegans transcription factor NHR-49 has been extensively studied for its functions in regulating metabolic processes, stress responses, innate immunity and aging. Molecular identification of a gene previously known as bah-3 , which affects susceptibility of worms to deleterious surface attachment of bacterial biofilms from Yersinia spp., revealed that bah-3 ( dc9 ) is an ochre nonsense allele of nhr-49 . Other severe mutations of nhr-49 also had a Bah phenotype, but deletions affecting 5' isoforms of the gene did not affect biofilm attachment, nor did 3' gain-of-function missense mutations. Other bah genes ( bah-1 , bah-2 , bah-4 ) encode GT92 glycosylation factors, predicted to affect surface coat. NHR-49 may act as a positive transcription factor for one or more of these surface glycosylation genes, in contrast to its other roles in regulating metabolic processes.

Original publication

DOI

10.17912/micropub.biology.001522

Type

Journal

microPublication biology

Publication Date

01/2025

Volume

2025

Addresses

Biochemistry, University of Oxford, Oxford, England, United Kingdom.