Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Nirmatrelvir is a substrate-related inhibitor of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) main protease (Mpro) that is clinically used in combination with ritonavir to treat COVID-19. Derivatives of nirmatrelvir, modified at the substrate P2-equivalent position, have been developed to fine-tune inhibitor properties and are now in clinical use. We report the synthesis of nirmatrelvir derivatives with a (R)-4,4-dimethyl-4-silaproline (silaproline) group at the P2-equivalent position. Mass spectrometry (MS)-based assays demonstrate that silaproline-bearing nirmatrelvir derivatives efficiently inhibit isolated recombinant Mpro, albeit with reduced potency compared to nirmatrelvir. Investigations with SARS-CoV-2 infected VeroE6 cells reveal that the silaproline-bearing inhibitors with a CF3 group at the P4-equivalent position inhibit viral progression, implying that incorporating silicon atoms into Mpro inhibitors can yield in vivo active inhibitors with appropriate optimization. MS and crystallographic studies show that the nucleophilic active site cysteine residue of Mpro (Cys145) reacts with the nitrile group of the silaproline-bearing inhibitors. Substituting the electrophilic nitrile group for a non-activated terminal alkyne shifts the inhibition mode from reversible covalent inhibition to irreversible covalent inhibition. One of the two prochiral silaproline methyl groups occupies space in the S2 pocket that is unoccupied in Mpro:nirmatrelvir complex structures, highlighting the value of sila-derivatives in structure-activity-relationship (SAR) studies. The combined results highlight the potential of silicon-containing molecules for inhibition of Mpro and, by implication, other nucleophilic cysteine enzymes.

Original publication

DOI

10.1016/j.ejmech.2025.117603

Type

Journal

European journal of medicinal chemistry

Publication Date

04/2025

Volume

291

Addresses

Chemistry Research Laboratory, Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, University of Oxford, 12 Mansfield Road, OX1 3TA, Oxford, UK.