Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Insulin-like growth factor-1 (IGF-1) is associated with prostate cancer (PCa) development and lethality and exhibits immunosuppressive properties in other models. We investigated IGF-1’s tumor-intrinsic immune effects in PCa to understand mechanisms underlying its poor immunotherapy response. Transcriptional profiling of human (DU145, 22Rv1) and murine (Myc-CaP) PCa cells revealed that IGF-1 suppresses cytokine signalling, antigen processing and presentation, and additional immune regulatory pathways. We further examined the expression of components involved in cancer cell recognition and immune evasion: the antigen processing machinery and PD-L1 checkpoint. IGF-1 downregulated key elements such as transporters associated with antigen processing (TAPs), endoplasmic reticulum aminopeptidase-1 (ERAP-1), and Class I β2-microglobulin, without significantly altering Class I allele expression. These changes were associated with reduced surface presentation of Class I complexes on Myc-CaP cells, suggesting disrupted peptide transport, processing, and/or presentation. In contrast, IGF-1 upregulated the immune checkpoint CD274 (PD-L1) via IGF receptor/AKT/ERK-dependent signalling. Analysis of TCGA Firehose Legacy PCa data showed higher CD274 expression in tumors with elevated IGF1 and IGFBP5. Multiplex immunofluorescence in primary PCa confirmed increased PD-L1 in patients with high serum IGF-1, supporting its role in immune evasion. Overall, these findings reveal a novel IGF-1-driven immunosuppressive mechanism that may underlie PCa’s resistance to immunotherapy.

Original publication

DOI

10.1038/s41598-025-22288-5

Type

Journal article

Journal

Scientific Reports

Publisher

Springer Science and Business Media LLC

Publication Date

03/11/2025

Volume

15