Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

<jats:p>A low [Hb] (Hb concentration) is out-balanced by peripheral vasodilation via mechanisms that are incompletely understood. Peripheral vasodilation is influenced by NO (nitric oxide) released from vascular endothelium in response to increased vessel wall shear stress, and absorption by Hb is the main mechanism by which the bioactivity of NO is disarmed. Thus we propose that graded NO absorption is the mechanism through which a low [Hb] is related to peripheral vasodilation. In the present study, we examined the relationship between [Hb] and FMD (flow-mediated vasodilation; 5 min of cuff ischaemia) of the radial and brachial arteries in 33 normal subjects and in 13 patients with Type II diabetes, known to have impaired NO-mediated vasodilation. The smaller radial artery provided the more sensitive test, as it had a 2-fold larger FMD than the brachial artery (22±18% compared with 9±18% respectively, in normal subjects; means±S.D., P&lt;0.05). FMD of the radial artery had a negative correlation with [Hb] (r2=−0.66, P&lt;0.05; n=27). In subjects with [Hb] below and above the median of 14.1 g/dl, the radial artery FMD was 30±22% compared with 13±12% respectively (P&lt;0.05). In diabetic patients, FMD was lower and a co-variation with [Hb] could not be established. Thus, in normal subjects, NO-mediated endothelium-related vasodilation at least partly out-balanced the ‘added burden’ of a low [Hb] during post-ischaemic reperfusion.</jats:p>

Original publication

DOI

10.1042/cs20050291

Type

Journal article

Journal

Clinical Science

Publisher

Portland Press Ltd.

Publication Date

01/04/2006

Volume

110

Pages

467 - 473