Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Shape reconstruction from sparse point clouds/images is a challenging and relevant task required for a variety of applications in computer vision and medical image analysis (e.g. surgical navigation, cardiac motion analysis, augmented/virtual reality systems). A subset of such methods, viz. 3D shape reconstruction from 2D contours, is especially relevant for computer-aided diagnosis and intervention applications involving meshes derived from multiple 2D image slices, views or projections. We propose a deep learning architecture, coined Mesh Reconstruction Network (MR-Net), which tackles this problem. MR-Net enables accurate 3D mesh reconstruction in real-time despite missing data and with sparse annotations. Using 3D cardiac shape reconstruction from 2D contours defined on short-axis cardiac magnetic resonance image slices as an exemplar, we demonstrate that our approach consistently outperforms state-of-the-art techniques for shape reconstruction from unstructured point clouds. Our approach can reconstruct 3D cardiac meshes to within 2.5-mm point-to-point error, concerning the ground-truth data (the original image spatial resolution is ∼1.8×1.8×10mm3). We further evaluate the robustness of the proposed approach to incomplete data, and contours estimated using an automatic segmentation algorithm. MR-Net is generic and could reconstruct shapes of other organs, making it compelling as a tool for various applications in medical image analysis.

Original publication

DOI

10.1016/j.media.2021.102228

Type

Journal article

Journal

Medical image analysis

Publication Date

12/2021

Volume

74

Addresses

Centre for Computational Imaging and Simulation Technologies in Biomedicine, School of Computing, University of Leeds, Leeds, UK; Biomedical Imaging Department, Leeds Institute for Cardiovascular and Metabolic Medicine, School of Medicine University of Leeds, Leeds, UK.