Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

It is proposed that the acquisition and maintenance of fluent speech depend on the rapid temporal integration of motor feedforward and polysensory (auditory and somatosensory) feedback signals. In a functional magnetic resonance imaging study on 21 healthy right-handed, English-speaking volunteers, we investigated activity within these motor and sensory pathways and their integration during speech. Four motor conditions were studied: two speech conditions (propositional and nonpropositional speech) and two silent conditions requiring repetitive movement of the principal articulators (jaw and tongue movements). The scanning technique was adapted to minimize artifact associated with overt speech production. Our result indicates that this multimodal convergence occurs within the left and right supratemporal planes (STPs), with peaks of activity at their posteromedial extents, in regions classically considered as unimodal auditory association cortex. This cortical specialization contrasted sharply with the response of somatosensory association cortex (SII), in which activity was suppressed during speech but not during the silent repetitive movement of the principal articulators. It was also clearly distinct from the response of lateral auditory association cortex, which responded to auditory feedback alone, and from that within a left lateralized ventrolateral temporal and inferior frontal system, which served lexical- and sentence-level language retrieval. This response of cortical regions related to speech production is not predicted by the classical model of hierarchical cortical processing, providing new insights into the role of the STP in polysensory integration and into the modulation of activity in SII during normal speech production. These findings have novel implications for the acquisition and maintenance of fluent speech.

Original publication




Journal article


The Journal of neuroscience : the official journal of the Society for Neuroscience

Publication Date





9969 - 9975


Division of Neuroscience and Mental Health and Medical Research Council Clinical Sciences Centre, Imperial College London, London W12 0NN, United Kingdom.


Jaw, Tongue, Parietal Lobe, Temporal Lobe, Humans, Magnetic Resonance Imaging, Speech Production Measurement, Brain Mapping, Photic Stimulation, Speech, Perception, Auditory Perception, Speech Perception, Psychomotor Performance, Adult, Female, Male