Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wound healing is a highly complex biological process composed of three overlapping phases: inflammation, proliferation, and remodeling. Impairments at any one or more of these stages can lead to compromised healing. MicroRNAs (miRs) are non-coding RNAs that act as post-transcriptional regulators of multiple proteins and associated pathways. Thus, identification of the appropriate miR involved in the different phases of wound healing could reveal an effective third-generation genetic therapy in chronic wound care. Several miRs have been shown to be upregulated or downregulated during the wound healing process. This article examines the biological processes involved in wound healing, the miR involved at each stage, and how expression levels are modulated in the chronic wound environment. Key miRs are highlighted as possible therapeutic targets, either through underexpression or overexpression, and the healing benefits are interrogated. These are prime miR candidates that could be considered as a gene therapy option for patients suffering from chronic wounds. The success of miR as a gene therapy, however, is reliant on the development of an appropriate delivery system that must be designed to overcome both extracellular and intracellular barriers.

Original publication

DOI

10.1016/j.omtn.2017.06.003

Type

Journal article

Journal

Molecular therapy. Nucleic acids

Publication Date

09/2017

Volume

8

Pages

46 - 55

Addresses

School of Pharmacy, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.