Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A complex interplay between species governs the evolution of spatial patterns in ecology. An open problem in the biological sciences is characterizing spatio-temporal data and understanding how changes at the local scale affect global dynamics/behaviour. Here, we extend a well-studied temporal mathematical model of coral reef dynamics to include stochastic and spatial interactions and generate data to study different ecological scenarios. We present descriptors to characterize patterns in heterogeneous spatio-temporal data surpassing spatially averaged measures. We apply these descriptors to simulated coral data and demonstrate the utility of two topological data analysis techniques-persistent homology and zigzag persistence-for characterizing mechanisms of reef resilience. We show that the introduction of local competition between species leads to the appearance of coral clusters in the reef. We use our analyses to distinguish temporal dynamics stemming from different initial configurations of coral, showing that the neighbourhood composition of coral sites determines their long-term survival. Using zigzag persistence, we determine which spatial configurations protect coral from extinction in different environments. Finally, we apply this toolkit of multi-scale methods to empirical coral reef data, which distinguish spatio-temporal reef dynamics in different locations, and demonstrate the applicability to a range of datasets.

Original publication

DOI

10.1098/rsif.2023.0280

Type

Journal article

Journal

Journal of the Royal Society, Interface

Publication Date

08/2023

Volume

20

Addresses

Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK.

Keywords

Pancreas, Animals, Anthozoa, Research Design, Coral Reefs