Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Insulin resistance leads to excessive endothelial cell (EC) superoxide generation and accelerated atherosclerosis. The principal source of superoxide from the insulin-resistant endothelium is the Nox2 isoform of NADPH oxidase. Here we examine the therapeutic potential of Nox2 inhibition on superoxide generation in saphenous vein ECs (SVECs) from patients with advanced atherosclerosis and type 2 diabetes and on vascular function, vascular damage, and lipid deposition in apolipoprotein E-deficient (ApoE−/−) mice with EC-specific insulin resistance (ESMIRO). To examine the effect of genetic inhibition of Nox2, ESMIRO mice deficient in ApoE−/− and Nox2 (ESMIRO/ApoE−/−/Nox2−/y) were generated and compared with ESMIRO/ApoE−/−/Nox2+/y littermates. To examine the effect of pharmacological inhibition of Nox2, we administered gp91dstat or scrambled peptide to ESMIRO/ApoE−/− mice. SVECs from diabetic patients had increased expression of Nox2 protein with concomitant increase in superoxide generation, which could be reduced by the Nox2 inhibitor gp91dstat. After 12 wk Western diet, ESMIRO/ApoE−/−/Nox2−/y mice had reduced EC superoxide generation and greater aortic relaxation to acetylcholine. ESMIRO/ApoE−/−/Nox2−/y mice developed more lipid deposition in the thoraco-abdominal aorta with multiple foci of elastin fragmentation at the level of the aortic sinus and greater expression of intercellular adhesion molecule-1 (ICAM-1). Gp91dstat reduced EC superoxide and lipid deposition in the thoraco-abdominal aorta of ESMIRO/ApoE−/− mice without causing elastin fragmentation or increased ICAM-1 expression. These results demonstrate that insulin resistance is characterized by increased Nox2-derived vascular superoxide. Complete deletion of Nox2 in mice with EC insulin resistance exacerbates, whereas partial pharmacological Nox2 inhibition protects against, insulin resistance-induced vascular damage.

Original publication

DOI

10.1152/ajpcell.00389.2019

Type

Journal article

Journal

American Journal of Physiology-Cell Physiology

Publisher

American Physiological Society

Publication Date

01/07/2020

Volume

319

Pages

C64 - C74