Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Many RNA-binding proteins (RBPs) regulate both alternative exons and poly(A) site selection. To understand their regulatory principles, we developed expressRNA, a web platform encompassing computational tools for integration of iCLIP and RNA motif analyses with RNA-seq and 3' mRNA sequencing. This reveals at nucleotide resolution the "RNA maps" describing how the RNA binding positions of RBPs relate to their regulatory functions. We use this approach to examine how TDP-43, an RBP involved in several neurodegenerative diseases, binds around its regulated poly(A) sites. Binding close to the poly(A) site generally represses, whereas binding further downstream enhances use of the site, which is similar to TDP-43 binding around regulated exons. Our RNAmotifs2 software also identifies sequence motifs that cluster together with the binding motifs of TDP-43. We conclude that TDP-43 directly regulates diverse types of pre-mRNA processing according to common position-dependent principles.

Original publication

DOI

10.1016/j.celrep.2017.04.028

Type

Journal article

Journal

Cell reports

Publication Date

05/2017

Volume

19

Pages

1056 - 1067

Addresses

Institute of Molecular Life Sciences and Swiss Institute of Bioinformatics, Winterthurerstrasse 190, 8057 Zurich, Switzerland; MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK. Electronic address: gregor.rot@uzh.ch.

Keywords

Humans, DNA-Binding Proteins, RNA, Messenger, Polyadenylation, RNA Splicing, RNA 3' Polyadenylation Signals, Protein Binding, HEK293 Cells