Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

From early in the coronavirus disease 2019 (COVID-19) pandemic, there was interest in using machine learning methods to predict COVID-19 infection status based on vocal audio signals, for example, cough recordings. However, early studies had limitations in terms of data collection and of how the performances of the proposed predictive models were assessed. This article describes how these limitations have been overcome in a study carried out by the Turing-RSS Health Data Laboratory and the UK Health Security Agency. As part of the study, the UK Health Security Agency collected a dataset of acoustic recordings, SARS-CoV-2 infection status and extensive study participant meta-data. This allowed us to rigorously assess state-of-the-art machine learning techniques to predict SARS-CoV-2 infection status based on vocal audio signals. The lessons learned from this project should inform future studies on statistical evaluation methods to assess the performance of machine learning techniques for public health tasks.

Original publication

DOI

10.1002/sim.10211

Type

Journal article

Journal

Stat Med

Publication Date

05/09/2024

Keywords

UK COVID‐19 vocal audio dataset, bioacoustic markers, choice of test set, confounding, matching