Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Direct visualization of HIV-1 nuclear import through the nuclear pore complex (NPC) presents a technical challenge due to the rarity of this process. To enable systematic investigation, we developed a robust in situ system that mimics HIV-1 nuclear import in a near-native context using isolated HIV-1 virus like particles (VLP) cores and permeabilized CD4 + T lymphocyte (CEM) cells. This approach supports docking and translocation of abundant viral cores through nuclear pores into the nucleus. For high-resolution visualization, we implemented an integrated correlative approach to guide cryo-focused ion beam (cryo-FIB) milling and cryo-electron tomography (cryo-ET) imaging, enabling precise targeting and structural characterization of individual nuclear import events. Using this workflow, we visualized 510 HIV-1 VLP cores at distinct stages of nuclear import, capturing key snapshots of the full progression of nuclear import. Subsequent statistical and structural analyses allow classification of core morphologies and identification of translocation-associated remodeling in nuclear pores. This work provides a methodological foundation for dissecting HIV-1 and potentially other viruses nuclear import processes and post-entry events in a controlled and quantitative manner.

Original publication

DOI

10.1038/s44319-025-00567-6

Type

Journal article

Journal

EMBO Rep

Publication Date

29/08/2025

Keywords

Cryo-CLEM, Cryo-ET and Subtomogram Averaging, Cryo-FIB/SEM, HIV-1 Nuclear Import, Nuclear Pore