Nonobese Diabetic Congenic Strain Analysis of Autoimmune Diabetes Reveals Genetic Complexity of the Idd18 Locus and Identifies Vav3 as a Candidate Gene
Fraser HI., Dendrou CA., Healy B., Rainbow DB., Howlett S., Smink LJ., Gregory S., Steward CA., Todd JA., Peterson LB., Wicker LS.
Abstract We have used the public sequencing and annotation of the mouse genome to delimit the previously resolved type 1 diabetes (T1D) insulin-dependent diabetes (Idd)18 interval to a region on chromosome 3 that includes the immunologically relevant candidate gene, Vav3. To test the candidacy of Vav3, we developed a novel congenic strain that enabled the resolution of Idd18 to a 604-kb interval, designated Idd18.1, which contains only two annotated genes: the complete sequence of Vav3 and the last exon of the gene encoding NETRIN G1, Ntng1. Targeted sequencing of Idd18.1 in the NOD mouse strain revealed that allelic variation between NOD and C57BL/6J (B6) occurs in noncoding regions with 138 single nucleotide polymorphisms concentrated in the introns between exons 20 and 27 and immediately after the 3′ untranslated region. We observed differential expression of VAV3 RNA transcripts in thymocytes when comparing congenic mouse strains with B6 or NOD alleles at Idd18.1. The T1D protection associated with B6 alleles of Idd18.1/Vav3 requires the presence of B6 protective alleles at Idd3, which are correlated with increased IL-2 production and regulatory T cell function. In the absence of B6 protective alleles at Idd3, we detected a second T1D protective B6 locus, Idd18.3, which is closely linked to, but distinct from, Idd18.1. Therefore, genetic mapping, sequencing, and gene expression evidence indicate that alteration of VAV3 expression is an etiological factor in the development of autoimmune β-cell destruction in NOD mice. This study also demonstrates that a congenic strain mapping approach can isolate closely linked susceptibility genes.