Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND:Obesity is characterized by impaired cardiac energetics, which may play a role in the development of diastolic dysfunction and inappropriate shortness of breath. We assessed whether, in obesity, derangement of energetics and diastolic function is further altered during acute cardiac stress. METHODS AND RESULTS:Normal-weight (body mass index, 22±2 kg/m(2); n=9-17) and obese (body mass index, 39±7 kg/m(2); n=17-46) subjects underwent assessment of diastolic left ventricular function (cine magnetic resonance imaging volume-time curve analysis) and cardiac energetics (phosphocreatine/ATP ratio; (31)P-magnetic resonance spectroscopy) at rest and during dobutamine stress (heart rate increase, 65±22% and 69±14%, respectively; P=0.61). At rest, obesity was associated with a 22% lower peak filling rate (P<0.001) and a 15% lower phosphocreatine/ATP ratio (1.73±0.40 versus 2.03±0.28; P=0.048). Peak filling rate correlated with fat mass, left ventricular mass, leptin, waist-to-hip ratio, and phosphocreatine/ATP ratio. On multivariable analysis, phosphocreatine/ATP was the only independent predictor of peak filling rate (β=0.50; P=0.03). During stress, a further reduction in phosphocreatine/ATP occurred in obese (from 1.73±0.40 to 1.53±0.50; P=0.03) but not in normal-weight (from 1.98±0.24 to 2.04±0.34; P=0.50) subject. For similar levels of inotropic stress, there were smaller increases in peak filling rate in obesity (38% versus 70%; P=0.01). CONCLUSIONS:In obesity, cardiac energetics are further deranged during inotropic stress, in association with continued diastolic dysfunction. Myocardial energetics may play a key role in the impairment of diastolic function in obesity.

Original publication

DOI

10.1161/circulationaha.111.069518

Type

Journal article

Journal

Circulation

Publication Date

03/2012

Volume

125

Pages

1511 - 1519

Addresses

Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, UK. oliver.rider@gmail.com

Keywords

Myocardium, Humans, Obesity, Catecholamines, Exercise Test, Body Mass Index, Energy Metabolism, Diastole, Ventricular Function, Left, Adult, Middle Aged, Female, Male, Stress, Physiological