Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

ABSTRACT The importance of recombination in the evolution and genetic diversity of the hepatitis C virus (HCV) is currently uncertain. Only a small number of intergenotypic recombinants have been identified so far, and each has core and envelope genes classified as belonging to genotype 2. Here, we investigated two putative genotype 4/1 recombinants from southern Cameroon using a number of approaches, including standard Sanger sequencing, genotype-specific PCR amplification, and non-HCV-specific Illumina RNA sequencing (RNA-seq). Recombination between genotypes 1 and 4 was confirmed in both samples, and the parental lineages of each recombinant belong to HCV subtypes that are cocirculating at a high prevalence in Cameroon. Using the RNA-seq approach, we obtained a complete genome for one sample, which contained a recombination breakpoint at the E2/P7 gene junction. We developed and applied a new method, called Deep SimPlot, which can be used to visualize and identify viral recombination directly from the short sequence reads created by next-generation sequencing in conjunction with a consensus sequence.

Original publication

DOI

10.1128/jcm.00483-15

Type

Journal article

Journal

Journal of Clinical Microbiology

Publisher

American Society for Microbiology

Publication Date

10/2015

Volume

53

Pages

3155 - 3164